
Reinforcement learning with Gaussian processes

Yaakov Engel yaki@cs.ualberta.ca

Dept. of Computing Science, University of Alberta, Edmonton, Canada

Shie Mannor shie@ece.mcgill.ca

Dept. of Electrical and Computer Engineering, McGill University, Montreal, Canada

Ron Meir rmeir@ee.technion.ac.il

Dept. of Electrical Engineering, Technion Institute of Technology, Haifa 32000, Israel

Abstract

Gaussian Process Temporal Difference
(GPTD) learning offers a Bayesian solution
to the policy evaluation problem of reinforce-
ment learning. In this paper we extend the
GPTD framework by addressing two pressing
issues, which were not adequately treated
in the original GPTD paper (Engel et al.,
2003). The first is the issue of stochasticity
in the state transitions, and the second is
concerned with action selection and policy
improvement. We present a new generative
model for the value function, deduced from
its relation with the discounted return. We
derive a corresponding on-line algorithm
for learning the posterior moments of the
value Gaussian process. We also present a
SARSA based extension of GPTD, termed
GPSARSA, that allows the selection of
actions and the gradual improvement of
policies without requiring a world-model.

1. Introduction

In Engel et al. (2003) the use of Gaussian Processes
(GPs) for solving the Reinforcement Learning (RL)
problem of value estimation was introduced. Since
GPs belong to the family of kernel machines, they
bring into RL the high, and quickly growing represen-
tational flexibility of kernel based representations, al-
lowing them to deal with almost any conceivable object
of interest, from text documents and DNA sequence
data to probability distributions, trees and graphs, to
mention just a few (see Schölkopf & Smola, 2002, and
references therein). Moreover, the use of Bayesian rea-

Appearing in Proceedings of the 22nd International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

soning with GPs allows one to obtain not only value
estimates, but also estimates of the uncertainty in the
value, and this in large and even infinite MDPs.

However, both the probabilistic generative model and
the corresponding Gaussian Process Temporal Dif-
ferences (GPTD) algorithm proposed in Engel et al.
(2003) had two major shortcomings. First, the original
model is strictly correct only if the state transitions of
the underlying Markov Decision Process (MDP) are
deterministic1, and if the rewards are corrupted by
white Gaussian noise. While the second assumption is
relatively innocuous, the first is a serious handicap to
the applicability of the GPTD model to general MDPs.
Secondly, in RL what we are really after is an optimal,
or at least a good suboptimal action selection policy.
Many algorithms for solving this problem are based on
the Policy Iteration method, in which the value func-
tion must be estimated for a sequence of fixed poli-
cies, making value estimation, or policy evaluation, a
crucial algorithmic component. Since the GPTD al-
gorithm only addresses the value estimation problem,
we need to modify it somehow, if we wish to solve the
complete RL problem.

One possible heuristic modification, demonstrated in
Engel et al. (2003), is the use of Optimistic Policy It-
eration (OPI) (Bertsekas & Tsitsiklis, 1996). In OPI
the learning agent utilizes a model of its environment
and its current value estimate to guess the expected
payoff for each of the actions available to it at each
time step. It then greedily (or ε-greedily) chooses the
highest ranking action. Clearly, OPI may be used only
when a good model of the MDP is available to the
agent. However, assuming that such a model is avail-
able as prior knowledge is a rather strong assumption
inapplicable in many domains, while estimating such a
model on-the-fly, especially when the state-transitions

1Or if the discount factor is zero, in which case the
model degenerates to simple GP regression.

Reinforcement learning with Gaussian processes

are stochastic, may be prohibitively expensive. In
either case, computing the expectations involved in
ranking the actions may itself be prohibitively costly.
Another possible modification, one that does not re-
quire a model, is to estimate state-action values, or
Q-values, using an algorithm such as Sutton’s SARSA
(Sutton & Barto, 1998).

The first contribution of this paper is a modification of
the original GPTD model that allows it to learn value
and value-uncertainty estimates in general MDPs, al-
lowing for stochasticity in both transitions and re-
wards. Drawing inspiration from Sutton’s SARSA al-
gorithm, our second contribution is GPSARSA, an ex-
tension of the GPTD algorithm for learning a Gaussian
distribution over state-action values, thus allowing us
to perform model-free policy improvement.

2. Modeling the Value Via the
Discounted Return

Let us introduce some definitions to be used in the
sequel. A Markov Decision Process (MDP) is a tuple
(X ,U , R, p) where X and U are the state and action
spaces, respectively; R : X → R is the immediate
reward, which may be random, in which case q(·|x)
denotes the distribution of rewards at the state x;
and p : X × U × X → [0, 1] is the transition distri-
bution, which we assume is stationary. A stationary
policy µ : X×U → [0, 1] is a mapping from states to ac-
tion selection probabilities. Given a fixed policy µ, the
transition probabilities of the MDP are given by the
policy-dependent state transition probability distribu-
tion pµ(x′|x) =

∫
U dup(x′|u,x)µ(u|x). The discounted

return D(x) for a state x is a random process defined
by

D(x) =
∞∑

i=0

γiR(xi)|x0 = x, with xi+1 ∼ pµ(·|xi).

(2.1)
Here, γ ∈ [0, 1] is a discount factor that determines
the exponential devaluation rate of delayed rewards2.
Note that the randomness in D(x0) for any given state
x0 is due both to the stochasticity of the sequence of
states that follow x0, and to the randomness in the re-
wards R(x0), R(x1), R(x2) We refer to this as the
intrinsic randomness of the MDP. Using the station-
arity of the MDP we may write

D(x) = R(x) + γD(x′), with x′ ∼ pµ(·|x). (2.2)

The equality here marks an equality in the distribu-
tions of the two sides of the equation. Let us define

2When γ = 1 the policy must be proper (i.e., guaranteed
to terminate), see Bertsekas and Tsitsiklis (1996).

the expectation operator Eµ as the expectation over all
possible trajectories and all possible rewards collected
in them. This allows us to define the value function
V (x) as the result of applying this expectation opera-
tor to the discounted return D(x). Thus, applying Eµ

to both sides of Eq. (2.2), and using the conditional
expectation formula (Scharf, 1991), we get

V (x) = r̄(x) + γEx′|xV (x′) ∀x ∈ X , (2.3)

which is recognizable as the fixed-policy version of the
Bellman equation (Bertsekas & Tsitsiklis, 1996).

2.1. The Value Model

The recursive definition of the discounted return (2.2)
is the basis for our statistical generative model con-
necting values and rewards. Let us decompose the
discounted return D into its mean V and a random,
zero-mean residual ∆V ,

D(x) = V (x) + ∆V (x), (2.4)

where V (x) = EµD(x). In the classic frequentist ap-
proach V (·) is no longer random, since it is the true
value function induced by the policy µ. Adopting the
Bayesian methodology, we may still view the value
V (·) as a random entity by assigning it additional ran-
domness that is due to our subjective uncertainty re-
garding the MDP’s model (p, q). We do not know what
the true functions p and q are, which means that we
are also uncertain about the true value function. We
choose to model this additional extrinsic uncertainty
by defining V (x) as a random process indexed by the
state variable x. This decomposition is useful, since
it separates the two sources of uncertainty inherent in
the discounted return process D: For a known MDP
model, V becomes deterministic and the randomness
in D is fully attributed to the intrinsic randomness
in the state-reward trajectory, modeled by ∆V . On
the other hand, in a MDP in which both transitions
and rewards are deterministic but otherwise unknown,
∆V becomes deterministic (i.e., identically zero), and
the randomness in D is due solely to the extrinsic un-
certainty, modeled by V . For a more thorough discus-
sion of intrinsic and extrinsic uncertainties see Mannor
et al. (2004).

Substituting Eq. (2.4) into Eq. (2.2) and rearranging
we get

R(x) = V (x)−γV (x′)+N(x,x′), x′ ∼ pµ(·|x), (2.5)

where N(x,x′) def= ∆V (x) − γ∆V (x′). Suppose we
are provided with a trajectory x0,x1, . . . ,xt, sam-
pled from the MDP under a policy µ, i.e., from

Reinforcement learning with Gaussian processes

p0(x0)Πt
i=1p

µ(xi|xi−1), where p0 is an arbitrary prob-
ability distribution for the first state. Let us write our
model (2.5) with respect to these samples:

R(xi) = V (xi)−γV (xi+1)+N(xi,xi+1), i = 0, . . . , t−1.
(2.6)

Defining the finite-dimensional processes Rt, Vt, Nt

and the t× (t + 1) matrix Ht

Rt = (R(x0), . . . , R(xt))
>

,

Vt = (V (x0), . . . , V (xt))
>

,

Nt = (N(x0,x1), . . . , N(xt−1,xt))
>

,

Ht =




1 −γ 0 . . . 0
0 1 −γ . . . 0
...

...
0 0 . . . 1 −γ


 , (2.7)

we may write the equation set (2.6) more concisely as

Rt−1 = HtVt + Nt. (2.8)

In order to specify a complete probabilistic generative
model connecting values and rewards, we need to de-
fine a prior distribution for the value process V and
the distribution of the “noise” process N . As in the
original GPTD model, we impose a Gaussian prior
over value functions, i.e., V ∼ N (0, k(·, ·)), meaning
that V is a Gaussian Process (GP) for which, a pri-
ori, E(V (x)) = 0 and E(V (x)V (x′)) = k(x,x′) for all
x,x′ ∈ X , where k is a positive-definite kernel func-
tion. Therefore, Vt ∼ N (0,Kt), where 0 is a vector
of zeros and [Kt]i,j = k(xi,xj). Our choice of kernel
function k should reflect our prior beliefs concerning
the correlations between the values of states in the do-
main at hand.

To maintain the analytical tractability of the poste-
rior value distribution, we model the residuals ∆V t =
(∆V (x0), . . . , ∆V (xt))

> as a Gaussian process3. This
means that the distribution of the vector ∆V t is com-
pletely specified by its mean and covariance. An-
other assumption we make is that each of the residuals
∆V (xi) is generated independently of all the others.
This means that, for any i 6= j, the random variables
∆V (xi) and ∆V (xj) correspond to two distinct ex-
periments, in which two random trajectories starting

3This may not be a correct assumption in general; how-
ever, in the absence of any prior information concerning
the distribution of the residuals, it is the simplest assump-
tion we can make, since the Gaussian distribution possesses
the highest entropy among all distributions with the same
covariance. It is also possible to relax the Gaussianity re-
quirement on both the prior and the noise. The resulting
estimator may then be shown to provide the linear mini-
mum mean-squared error estimate for the value.

from the states xi and xj , respectively, are generated
independently of each other. We will discuss the im-
plications of this assumption in Section 2.2. We are
now ready to proceed with the derivation of the dis-
tribution of the noise process Nt.

By definition (Eq. 2.4), Eµ [∆V (x)] = 0 for all x,
so we have Eµ [N(xi,xi+1)] = 0. Turning to the
covariance, we have Eµ [N(xi,xi+1)N(xj ,xj+1)] =
Eµ [(∆V (xi)− γ∆V (xi+1))(∆V (xj)− γ∆V (xj+1))].
According to our assumption regarding the
independence of the residuals, for i 6= j,
Eµ

[
∆V (xi)∆V (xj)

]
= 0. In contrast,

Eµ

[
∆V (xi)2

]
= Varµ

[
D(xi)

]
is generally larger

than zero, unless both transitions and rewards
are deterministic. Denoting σ2

i = Varµ

[
D(xi)

]
,

these observations may be summarized into the
distribution of ∆V t: ∆V t ∼ N (

0, diag(σt)
)

where
σt = [σ2

0 , σ2
1 , . . . , σ2

t]>, and diag(·) denotes a diagonal
matrix whose diagonal entries are the components
of the argument vector. To simplify the subsequent
discussion let us assume4 that, for all i ∈ {1, . . . , t},
σi = σ, and therefore diag(σt) = σ2I. Since
Nt = Ht∆V t, we have Nt ∼ N (0,Σt) with,

Σt = σ2HtH>
t

= σ2




1 + γ2 −γ 0 . . . 0
−γ 1 + γ2 −γ . . . 0
...

...
...

0 0 . . . −γ 1 + γ2


 .

Let us briefly compare our new model with the orig-
inal, deterministic GPTD model. Both models result
in the same general form of Eq. (2.8). However, in the
original GPTD model the Gaussian noise term Nt had
a diagonal covariance matrix (white noise), while in
the new model Nt is colored with a tridiagonal covari-
ance matrix. Note also, that as the discount factor γ
is reduced to zero, the two models tend to coincide.
This is reasonable, since, the more strongly the future
is discounted, the less it should matter whether the
transitions are deterministic or stochastic. In Section
5 we perform an empirical comparison between the two
corresponding algorithms.

Since both the value prior and the noise are Gaussian,
by the Gauss-Markov theorem (Scharf, 1991), so is the
posterior distribution of the value conditioned on an
observed sequence of rewards rt−1 = (r0, . . . , rt−1)>.

4In practice it is also more likely that we will have some
idea concerning the average variance of the discounted re-
turn, rather than a detailed knowledge of the variance at
each individual state. Notwithstanding, the subsequent
analysis is easily extended to include state dependent noise,
see Engel (2005).

Reinforcement learning with Gaussian processes

The posterior mean and variance of the value at some
point x are given, respectively, by

v̂t(x) = kt(x)>αt,

pt(x) = k(x,x)− kt(x)>Ctkt(x), (2.9)

where kt(x) = (k(x0,x), . . . , k(xt,x))> ,

αt = H>
t

(
HtKtH>

t + Σt

)−1
rt−1,

Ct = H>
t

(
HtKtH>

t + Σt

)−1
Ht. (2.10)

2.2. Relation to Monte-Carlo Simulation

Consider an episode in which a terminal state is
reached at time step t + 1. In this case, the last
equation in our generative model should read R(xt) =
V (xt) + N(xt), since V (xt+1) = 0. Our complete set
of equations is now

Rt = Ht+1Vt + Nt, (2.11)

with Ht+1 a square (t + 1)× (t + 1) matrix, given by
Ht+1 as defined in (2.7), with its last column removed.
Note that Ht+1 is also invertible, since its determinant
equals 1.

Our model’s validity may be substantiated by perform-
ing a whitening transformation on Eq. (2.11). Since
the noise covariance matrix Σt is positive definite,
there exists a square matrix Zt satisfying Z>t Zt =
Σ−1

t . Multiplying Eq. (2.11) by Zt we then get
ZtRt = ZtHt+1Vt+ZtNt. The transformed noise term
ZtNt has a covariance matrix given by ZtΣtZ>t =
Zt(Z>t Zt)−1Z>t = I. Thus the transformation Zt

whitens the noise. In our case, a whitening matrix
is given by

Zt = H−1
t+1 =




1 γ γ2 . . . γt

0 1 γ . . . γt−1

...
...

0 0 0 . . . 1


 .

The transformed model is ZtRt = Vt + N ′
t with white

Gaussian noise N ′
t = ZtNt ∼ N (0, σ2I). Let us look at

the i’th equation (i.e., row) of this transformed model:

R(xi) + γR(xi+1) + . . . + γt−iR(xt) = V (xi) + N ′
i ,

with N ′
i ∼ N (0, σ2). This is exactly the generative

model we would have used had we wanted to learn
the value function by performing GP regression using
Monte-Carlo samples of the discounted-return as our
targets. The major benefit in using the GPTD formu-
lation is that it allows us to perform exact updates of
the parameters of the posterior value mean and covari-
ance on-line.

3. An On-Line Algorithm

Computing the parameters αt and Ct of the poste-
rior moments (2.10) is computationally expensive for
large samples, due to the need to store and invert a
matrix of size t × t. Even when this has been per-
formed, computing the posterior moments for every
new query point requires that we multiply two t × 1
vectors for the mean, and compute a t × t quadratic
form for the variance. These computational require-
ments are prohibitive if we are to compute value esti-
mates on-line, as is usually required of RL algorithms.
Engel et al. (2003) used an on-line kernel sparsifica-
tion algorithm that is based on a view of the kernel
as an inner-product in some high dimensional feature
space to which raw state vectors are mapped5. This
sparsification method incrementally constructs a dic-
tionary D =

{
x̃1, . . . , x̃|D|

}
of representative states.

Upon observing xt, the distance between the feature-
space image of xt and the span of the images of current
dictionary members is computed. If the squared dis-
tance exceeds some positive threshold ν, xt is added
to the dictionary, otherwise, it is left out. Determin-
ing this squared distance, δt, involves solving a simple
least-squares problem, whose solution is a |D|× 1 vec-
tor at of optimal approximation coefficients, satisfying

at = K̃−1
t−1k̃t−1(xt), δt = k(xt,xt)− a>t k̃t−1(xt),

(3.12)
where k̃t(x) =

(
k(x̃1,x), . . . , k(x̃|Dt|,x)

)> is a |Dt| ×
1 vector, and K̃t =

[
k̃t(x̃1), . . . , k̃t(x̃|Dt|)

]
a square

|Dt| × |Dt|, symmetric, positive-definite matrix.

By construction, the dictionary has the property that
the feature-space images of all states encountered dur-
ing learning may be approximated to within a squared
error ν by the images of the dictionary members. The
threshold ν may be tuned to control the sparsity of the
solution. Sparsification allows kernel expansions, such
as those appearing in Eq. 2.10, to be approximated by
kernel expansions involving only dictionary members,
by using

kt(x) ≈ Atk̃t(x), Kt ≈ AtK̃tA>
t . (3.13)

The t×|Dt| matrix At contains in its rows the approx-
imation coefficients computed by the sparsification al-
gorithm, i.e., At = [a1, . . . , at]

>, with padding zeros
placed where necessary, see Engel et al. (2003).

The end result of the sparsification procedure is that
the posterior value mean v̂t and variance pt may
be compactly approximated as follows (compare to

5For completeness, we repeat here some of the details
concerning this sparsification method.

Reinforcement learning with Gaussian processes

Eq. 2.9, 2.10)

v̂t(x) = k̃t(x)>α̃t,

pt(x) = k(x,x)− k̃t(x)>C̃tk̃t(x), (3.14)

where α̃t = H̃>
t

(
H̃tK̃tH̃>

t + Σt

)−1

rt−1

C̃t = H̃>
t

(
H̃tK̃tH̃>

t + Σt

)−1

H̃t, (3.15)

and H̃t = HtAt.

The parameters that the GPTD algorithm is required
to store and update in order to evaluate the posterior
mean and variance are now α̃t and C̃t, whose dimen-
sions are |Dt|×1 and |Dt|×|Dt|, respectively. In many
cases this results in significant computational savings,
both in terms of memory and time, when compared
with the exact non-sparse solution.

The derivation of the recursive update formulas for the
mean and covariance parameters α̃t and C̃t, for a new
sample xt, is rather long and tedious due to the added
complication arising from the non-diagonality of the
noise covariance matrix Σt. We therefore refer the in-
terested reader to (Engel, 2005, Appendix A.2.3) for
the complete derivation (with state dependent noise).
In Table 1 we present the resulting algorithm in pseu-
docode.

Some insight may be gained by noticing that the term
rt−1 − ∆k̃>t α̃t−1 appearing in the update for dt is a
temporal difference term. From Eq. (3.14) and the def-
inition of ∆k̃t (see Table 1) we have rt−1−∆k̃>t α̃t−1 =
rt−1 + γv̂t−1(xt) − v̂t−1(xt−1). Consequently, dt may
be viewed as a linear filter driven by the temporal dif-
ferences. The update of α̃t is simply the output of
this filter, multiplied by the gain vector c̃t/st. The
resemblance to the Kalman Filter updates is evident.
It should be noted that it is indeed fortunate that the
noise covariance matrix vanishes except for its three
central diagonals. This relative simplicity of the noise
model is the reason we were able to derive simple and
efficient recursive updates, such as the ones described
above.

4. Policy Improvement with GPSARSA

As mentioned above, SARSA is a fairly straightfor-
ward extension of the TD algorithm (Sutton & Barto,
1998), in which state-action values are estimated, thus
allowing policy improvement steps to be performed
without requiring any additional knowledge on the
MDP model. The idea is to use the stationary pol-
icy µ being followed in order to define a new, aug-
mented process, the state space of which is X ′ = X×U ,
(i.e., the original state space augmented by the action

Table 1. The On-Line Monte-Carlo GPTD Algorithm
Parameters: ν , σ

Initialize D0 = {x0}, K̃−1
0 = 1/k(x0,x0), a0 = (1),

�̃0 = 0, C̃0 = 0, c̃0 = 0, d0 = 0, 1/s0 = 0
for t = 1, 2, . . .

observe xt−1, rt−1, xt

at = K̃−1
t−1k̃t−1(xt)

δt = k(xt,xt)− k̃t−1(xt)
>at

∆k̃t = k̃t−1(xt−1)− γk̃t−1(xt)
if δt > ν

K̃−1
t = 1

δt

�
δtK̃

−1
t−1 + ata>t −at

−a>t 1

�
at = (0, . . . , 1)>

h̃t = (at−1,−γ)>

∆ktt = a>t−1

�
k̃t−1(xt−1)− 2γk̃t−1(xt)

�
+ γ2k(xt,xt)

c̃t = γσ2

st−1

�
c̃t−1

0

�
+ h̃t −

�
C̃t−1∆k̃t

0

�
dt = γσ2

st−1
dt−1 + rt−1 −∆k̃>t �̃t−1

st = (1 + γ2)σ2 + ∆ktt −∆k̃>t C̃t−1∆k̃t

+ 2γσ2

st−1
c̃>t−1∆k̃t − γ2σ4

st−1

�̃t−1 =

�
�̃t−1

0

�
C̃t−1 =

�
C̃t−1 0
0> 0

�
else

h̃t = at−1 − γat

∆ktt = h̃>t ∆k̃t

c̃t = γσ2

st−1
c̃t + h̃t − C̃t−1∆k̃t

st = (1 + γ2)σ2 + ∆k̃>t
�
c̃t + γσ2

st−1
c̃t−1

�
− γ2σ4

st−1

end if
�̃t = �̃t−1 + c̃t

st
dt

C̃t = C̃t−1 + 1
st

c̃tc̃
>
t

end for

return Dt, �̃t, C̃t

space), maintaining the same reward model. This aug-
mented process is Markovian with transition probabil-
ities p′(x′,u′|x,u) = pµ(x′|x)µ(u′|x′). SARSA is sim-
ply the TD algorithm applied to this new process. The
same reasoning may be applied to derive a GPSARSA
algorithm from the GPTD algorithm. All we need is
to define a covariance kernel function over state-action
pairs, i.e., k : (X × U) × (X × U) → R. Since states
and actions are different entities it makes sense to de-
compose k into a state-kernel kx and an action-kernel
ku: k(x,u,x′,u′) = kx(x,x′)ku(u,u′). If both kx and
ku are kernels we know that k is also a legitimate ker-
nel (Schölkopf & Smola, 2002), and just as the state-
kernel codes our prior beliefs concerning correlations
between the values of different states, so should the
action-kernel code our prior beliefs on value correla-
tions between different actions.

All that remains now is to run GPTD on the aug-
mented state-reward sequence, using the new state-

Reinforcement learning with Gaussian processes

action kernel function. Action selection may be per-
formed by ε-greedily choosing the highest ranking ac-
tion, and slowly decreasing ε toward zero. However,
we may run into difficulties trying to find the highest
ranking action from a large or even infinite number
of possible actions. This may be solved by sampling
the value estimates for a few randomly chosen actions
and maximize only among these, or using a fast itera-
tive maximization method, such as the quasi-Newton
method or conjugate gradients. Ideally, we should de-
sign the action kernel in such a way as to provide a
closed-form expression for the greedy action.

5. Experiments

As an example let us consider a two-dimensional con-
tinuous world residing in the unit square X = [0, 1]2. A
RL agent is required to solve a maze navigation prob-
lem in this world and find the shortest path from any
point in X to a goal region, while avoiding obstacles.
From any state, the agent may take a 0.1-long step in
any direction. For each time step until it reaches a goal
state the agent is penalized with a negative reward of
-1; if it hits an obstacle it is returned to its original
position. Let us represent an action as the unit vector
pointing in the direction of the corresponding move,
thus making U the unit circle. We leave the space ker-
nel kx unspecified and focus on the action kernel. Let
us define ku as follows, ku(u,u′) = 1+ (1−b)

2 (u>u′−1),
where b is a constant in [0, 1]. Since u>u′ is the co-
sine of the angle between u and u′, ku(u,u′) attains its
maximal value of 1 when the two actions are the same,
and its minimal value of b when the actions are 180 de-
grees apart. Setting b to a positive value is reasonable,
since even opposite actions from the same state are ex-
pected, a priori, to have positively correlated values.
However, the most valuable feature of this kernel is
its linearity, which makes it possible to maximize the
value estimate over the actions analytically.

Assume that the agent runs GPSARSA, so that
it maintains a dictionary of state-action pairs
Dt = {(x̃i, ũi)}m

i=1. The agent’s value esti-
mate for its current state x and an arbitrary ac-
tion u is v̂(x,u) =

∑m
i=1 α̃ikx(x̃i,x)ku(ũi,u) =∑m

i=1 α̃ikx(x̃i,x)
(
1 + (1−b)

2 (ũ>i u− 1)
)
. Maximizing

this expression w.r.t. u amounts to maximizing∑m
i=1 βi(x)ũ>i u subject to the constraint ‖u‖ = 1,

where βi(x) def= α̃ikx(x̃i,x). Solving this problem us-
ing a single Lagrange multiplier results in the greedy
action u∗ = 1

λ

∑m
i=1 βi(x)ũi where λ is a normalizing

constant. It is also possible to maximize the variance
estimate. This may be used to select non-greedy ex-
ploratory moves, by choosing the action the value of

which the agent is least certain about. Performing this
maximization amounts to solving a 2 × 2 Eigenvalue
problem, which, for lack of space, we defer to a longer
version of this paper.

Our experimental test-bed is the continuous state-
action maze described above. In order to introduce
stochasticity into the transitions, beyond the random-
ness inherent in the ε-greedy policy, we corrupt the
moves chosen by the agent with a zero-mean uniformly
distributed angular noise in the range of ±30 degrees.

A GPSARSA-learning agent was put through 200
episodes, each of which consisted of placing it in a
random position in the maze, and letting it roam the
maze until it reaches a goal position (success) or un-
til 100 time-steps elapse, whichever happens first. At
each episode, ε was set to 10/(10 + T), T being the
number of successful episodes completed up to that
point. The σ parameter of the intrinsic variance was
fixed at 1 for all states. The state kernel was Gaus-
sian k(x,x′) = k(x,x′) = c exp

(−‖x− x′‖2/(2σ2
k)

)
,

with σk = 0.2 and a c = 10 (c is the prior variance
of V , since k(x,x) = c). The action kernel was the
linear kernel described above. The parameter ν con-
trolling the sparsity of the solution was ν = 0.1, re-
sulting in a dictionary that saturates at 150-160 state-
action pairs. The results of such a run on a maze
similar to the one used in Engel et al. (2003) are
shown in Fig. 1. The next experiment shows how the
original GPTD algorithm of Engel et al. (2003) fails
when the state dynamics become non-deterministic,
as opposed to the MC-GPTD algorithm. To demon-
strate this we use a simple 10 state random-walk MDP.
The 10 states are arranged linearly from state 1 on
the left to state 10 on the right. The left-hand wall
is a retaining barrier, meaning that if a left step is
made from state 1, the state transitioned to is again
state 1. State 10 is a zero reward absorbing state.
The stochasticity in the transitions is introduced by
the policy, which is defined by the single parameter
Pr(right) – the probability of making a step to the
right (Pr(left) = 1 − Pr(right)). Each algorithm
was run for 400 episodes, where each episode begins
at state 1 and ends when the agent reaches state
10. This was repeated 10 times for each Pr(right) ∈
{0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1}. The
mean rewards equal 1 for states 1-9 and 0 for state
10. The observed rewards for states 1-9 were obtained
by corrupting the mean rewards with a 0.1 standard
deviation IID Gaussian noise. The kernel used was
Gaussian with a standard deviation of 1 (for the pur-
pose of computing the kernel, the states may be con-
sidered to be embedded in the real interval [1, 10], with
the Euclidean distance as the metric).

Reinforcement learning with Gaussian processes

−60

−60

−6
0

−6
0

−50

−50

−50

−50

−5
0 −50

−50

−5
0

−40

−4
0

−40

−4
0

−4
0

−3
0

−30

−30

−30

−3
0

−30

−30

−2
0

−20

−20

−20

−20

−20

−1
0

−10

−10

0.05

0.05

0.05

0.05
0.05

0.0
5

0.0
5

0.05

0.05
0.05

0.0
5

0.0
5

0.05

0.05

0.05

0.05

0.05

0.1 0.1

0.1 0.1

0.1

0.1
0.1

5
0.2

Figure 1. The posterior value mean (left), posterior value variance (center), and the corresponding greedy policy (right),
for the maze shown here, after 200 learning episodes. The goal is at the bottom left.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
10

−2

10
−1

10
0

10
1

10
2

Pr(right)

M
E

GPTD
MC−GPTD

Figure 2. MC-GPTD compared with the original GPTD on
the random-walk MDP. The mean error after 400 episodes
for each algorithm is plotted against Pr(right).

We then computed the root-mean-squared error
(RMSE) between the resulting value estimates and the
true value function (which is easily computed). In all
of the experiments (except when Pr(right) = 1, as
explained below), the error of the original GPTD con-
verged well before the 100 episode mark. The results of
this experiment are shown in Fig. 2. Both algorithms
converge to the same low error for Pr(right) = 1 (i.e.
a deterministic policy), with almost identical learning
curves (not shown). However, as Pr(right) is lowered,
making the transitions stochastic, the original GPTD
algorithm converges to inconsistent value estimates,
whereas MC-GPTD produces consistent results. This
bias was already observed and reported in Engel et al.
(2003) as the “dampening” of the value estimates.

6. Discussion

In Engel et al. (2003) GPTD was presented as an al-
gorithm for learning a posterior distribution over value

functions, for MDPs with stochastic rewards, but de-
terministic transitions. This was done by connecting
the hidden values and the observed rewards by a gener-
ative model of the form of Eq. 2.8, in which the covari-
ance of the noise term was diagonal: Σt = σ2I. In the
present paper we derived a second GPTD algorithm
that overcomes the limitation of the first algorithm to
deterministic transitions. We did this by invoking a
useful decomposition of the discounted return random
process into the value process, modeling our uncer-
tainty concerning the MDP’s model, and a zero-mean
residual (2.4), modeling the MDP’s intrinsic stochas-
ticity; and by additionally assuming independence of
the residuals. Surprisingly, all that this amounts to is
the replacement of the diagonal noise covariance, em-
ployed in Engel et al. (2003), with a tridiagonal, cor-
related noise covariance: Σt = σ2HtH>

t . This change
induces a model that we have shown to be effectively
equivalent to GP regression of Monte-Carlo samples
of the discounted return. This should help uncover
the implicit assumption underlying some of the most
prevalent MC value estimation methods (e.g., TD(1)
and LSTD(1)), namely, that the samples of the dis-
counted return used are IID. Although in most realistic
problems this assumption is clearly wrong, we never-
theless know that MC estimates, although not neces-
sarily optimal, are asymptotically consistent.

We are therefore inclined to adopt a broader view of
GPTD as a general GP-based framework for Bayesian
modeling of value functions, encompassing all genera-
tive models of the form R = HtV + N , with Ht given
by (2.7), a Gaussian prior placed on V , and an arbi-
trary zero-mean Gaussian noise process N . No doubt,
most such models will be meaningless from a value
estimation point of view, while others will not admit
efficient recursive algorithms for computing the poste-
rior value moments. However, if the noise covariance
Σt is suitably chosen, and if it is additionally simple

Reinforcement learning with Gaussian processes

in some way, we may be able to derive such a recursive
algorithm to compute complete posterior value distri-
butions, on-line. For instance, it turns out that by
employing alternative forms of noise covariance, we are
able to obtain GP-based variants of LSTD(λ) (Engel,
2005).

The second contribution of this paper is the extension
of GPTD to the estimation of state-action values, or
Q-values, leading to the GPSARSA algorithm. Learn-
ing Q-values makes the task of policy improvement in
the absence of a transition model tenable, even when
the action space is continuous, as demonstrated by
the example in Section 5. The availability of confi-
dence intervals for Q-values significantly expands the
repertoire of possible exploration strategies. In finite
MDPs, strategies employing such confidence intervals
have been experimentally shown to perform more effi-
ciently then conventional ε-greedy or Boltzmann sam-
pling strategies, e.g., Kaelbling (1993); Dearden et al.
(1998); Even-Dar et al. (2003). GPSARSA allows
such methods to be applied to infinite MDPs, and it
remains to be seen whether significant improvements
can be so achieved for realistic problems with contin-
uous space and action spaces.

In Rasmussen and Kuss (2004) an alternative approach
to employing GPs in RL is proposed. The approach
in that paper is fundamentally different from the gen-
erative approach of the GPTD framework. In Ras-
mussen and Kuss (2004) one GP is used to learn the
MDP’s transition model, while another is used to esti-
mate the value. This leads to an inherently off-line
algorithm, which is not capable of interacting with
the controlled system directly and updating its esti-
mates as additional data arrive. There are several
other shortcomings that limit the usefulness of that
framework. First, the state dynamics is assumed to
be factored, in the sense that each state coordinate is
assumed to evolve in time independently of all others.
This is a rather strong assumption that is not likely
to be satisfied in many real problems. Moreover, it is
also assumed that the reward function is completely
known in advance, and is of a very special form – ei-
ther polynomial or Gaussian. Finally, the covariance
kernels used are also restricted to be either polynomial
or Gaussian or a mixture of the two, due to the need
to integrate over products of GPs. This considerably
diminishes the appeal of employing GPs, since one of
the main reasons for using them, and kernel meth-
ods in general, is the richness of expression inherent
in the ability to construct arbitrary kernels, reflecting
domain and problem-specific knowledge, and defined
over sets of diverse objects, such as text documents
and DNA sequences (to name only two), and not just

points in metric space.

Preliminary results on a high dimensional control task,
in which GPTD is used in learning to control a simu-
lated robotic “Octopus” arm, with 88 state variables,
suggest that the kernel-based GPTD framework is not
limited to low dimensional domains such as those ex-
perimented with here (Engel et al., 2005). Standing
challenges for future work include balancing explo-
ration and exploitation in RL using the value confi-
dence intervals provided by GPTD methods; further
exploring the space of GPTD models by considering
additional noise covariance structures; application of
the GPTD methodology to POMDPs; creating a GP-
Actor-Critic architecture; GPQ-Learning for off-policy
learning of the optimal policy; and analyzing the con-
vergence properties of GPTD.

References

Bertsekas, D., & Tsitsiklis, J. (1996). Neuro-dynamic pro-
gramming. Athena Scientific.

Dearden, R., Friedman, N., & Russell, S. (1998). Bayesian
Q-learning. Proc. of the Fifteenth National Conference
on Artificial Intelligence.

Engel, Y. (2005). Algorithms and Representations for Rein-
forcement Learning. Doctoral dissertation, The Hebrew
University of Jerusalem. www.cs.ualberta.ca/∼yaki.

Engel, Y., Mannor, S., & Meir, R. (2003). Bayes meets
Bellman: The Gaussian process approach to temporal
difference learning. Proc. of the 20th International Con-
ference on Machine Learning.

Engel, Y., Szabo, P., & Volkinstein, D. (2005).
Learning to control an Octopus arm using
Gaussian process temporal difference learning.
www.cs.ualberta.ca/∼yaki/reports/octopus.pdf.

Even-Dar, E., Mannor, S., & Mansour, Y. (2003). Action
elimination and stopping conditions for reinforcement
learning. Proc. of the 20th International Conference on
Machine Learning.

Kaelbling, L. P. (1993). Learning in embedded systems.
MIT Press.

Mannor, S., Simester, D., Sun, P., & Tsitsiklis, J. (2004).
Bias and variance in value function estimation. Proc. of
the 21st International Conference on Machine Learning.

Rasmussen, C., & Kuss, M. (2004). Gaussian processes in
reinforcement learning. Advances in Neural Information
Processing Systems 16. Cambridge, MA: MIT Press.

Scharf, L. (1991). Statistical signal processing. Addison-
Wesley.

Schölkopf, B., & Smola, A. (2002). Learning with Kernels.
Cambridge, MA: MIT Press.

Sutton, R., & Barto, A. G. (1998). Reinforcement Learn-
ing: An Introduction. MIT Press.

