Combining Model-Based and Instance-Based
Learning for First Order Regression

Kurt Driessens

KURTDQWAIKATO.AC.NZ

Department of Computer Science, University of Waikato, Hamilton, New Zealand

Saso Dzeroski

SASO.DZEROSKI@IJS.SI

Department of Knowledge Technologies, Jozef Stefan Institute, Ljubljana, Slovenia

Abstract

The introduction of relational reinforcement
learning and the RRL algorithm gave rise
to the development of several first order
regression algorithms. So far, these algo-
rithms have employed either a model-based
approach or an instance-based approach. As
a consequence, they suffer from the typical
drawbacks of model-based learning such as
coarse function approximation or those of
lazy learning such as high computational in-
tensity.

In this paper we develop a new regression al-
gorithm that combines the strong points of
both approaches and tries to avoid the nor-
mally inherent draw-backs. By combining
model-based and instance-based learning, we
produce an incremental first order regression
algorithm that is both computationally effi-
cient and produces better predictions earlier
in the learning experiment.

1. Introduction

With the development of relational reinforcement
learning (Dzeroski et al., 1998; Dzeroski et al., 2001)
came the need for incremental relational regression al-
gorithms. A relational regression algorithm generalizes
over learning examples with a continuous target value
and makes predictions about the value of unseen ex-
amples, using a relational representation for both the
learning examples and the resulting function. A num-
ber of these algorithms have already been developed.
The TG algorithm builds regression trees (Driessens
et al., 2001), RIB uses instance based regression with
first order distances (Driessens & Ramon, 2003) and

Appearing in Proceedings of the 22™% International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

KBR relies on Gaussian processes and kernels for struc-
tured data as a similarity measure to make predictions
(Gértner et al., 2003). These algorithms, when com-
pared by how they approach the learning task and how
they make predictions, occupy opposite ends of a spec-
trum.

On the one hand, there is the model-based TG al-
gorithm. Model-based algorithms represent the pro-
cessed learning examples in an explicit generalizing
theory. When used in an incremental setting, they
usually discard learning examples when they are pro-
cessed and as a consequence are often efficient both
computationally and in the amount of memory that
they use. The symbolic approach used in first order
versions of these algorithms often allows a certain de-
gree of human interpretation of the learning results.
One of their drawbacks is that the constructed model is
often limited by the used learning bias and, when used
for regression, often makes a coarse approximation of
the target function. This behavior surfaces more fre-
quently when dealing with incremental data, as the
learned model is often very basic at the start of learn-
ing so that small changes in the model can cause large
differences in predictive accuracy.

On the other hand, instance based or lazy learning al-
gorithms such as RIB or KBR represent their collected
knowledge as a set of examples. In the simplest case,
this could be just the set of learning examples, but
more complex approaches that calculate “prototypes”
by combining or selecting learning examples can also
be used. They rely on a similarity measure between
examples to make predictions about the target value
of new examples. Instance based techniques are bet-
ter suited for numerical predictions. They offer a finer
degree of approximation with less amounts of learning
data, so their predictive behavior is often less erratic
when dealing with incremental data. They also suffer
less from over-generalization than model-based tech-
niques (Driessens & Dzeroski, 2004). However, they
do suffer computationally when a lot of learning exam-

Combining Model-Based and Instance-Based Learning for First Order Regression

ples need to be processed. Although some techniques
have been introduced that speed up the discovery of
nearest neighbors — such as kd-trees and ball-trees
(Moore, 1991; Freidman et al., 1977) — these meth-
ods were designed for the propositional setting and it
is not immediately obvious how to translate them to
the relational case.

In this paper, we develop a new, hybrid regression al-
gorithm, using ideas from some of the algorithms men-
tioned above. The goal is to combine the advantages
of the different approaches while trying to avoid the
draw-backs that usually accompany them. The new
algorithm should inherit the computational efficiency
of model based techniques, and by dividing the ex-
ample space into smaller parts, circumvent the com-
putational complexity of lazy learning techniques at
least partially. By incorporating instance based pre-
diction, we also will try to avoid the jagged, step-like
improvements and bias dependencies of model-based
techniques and incorporate the robustness of instance
based techniques in incremental settings.

The rest of this paper is structured as follows. Sec-
tion 2 discusses related work that sets out to combine
model-based and lazy learning, although not necessar-
ily in a regression or first order setting. It also dis-
cusses the TG and RIB algorithms as parts of these
will be used in the construction of the new algorithm.
In section 3, the new algorithm TRENDI is presented.
Section 4 describes the experimental setup of using the
RRL algorithm in a blocks world setting to compare
the performance of the new algorithm with previously
developed first order regression algorithms and Section
5 shows and discusses the results of these experiments.
Section 6 concludes and discusses some further work.

2. Related Work

2.1. Combining Model-Based and
Instance-Based Learning

Many other techniques for combining model-based and
instance-based learning have already been proposed.
However, most of these have been based on proposi-
tional representations of the learning examples.

The RISE algorithm (Domingos, 1996) combines rule-
based and instance-based induction by regarding rules
as generalized instances and using an adapted distance
measure between rules and instances. The algorithm
starts with the full set of learning examples and tries
to generalize examples (and rules) into more general
rules by finding the closest not covered example and
generating the most specific generalization that does
cover the chosen example. These generalizations are

accepted as long as they don’t cause a decrease in pre-
dictive accuracy!. Duplicate rules are removed from
the knowledge base.

Quinlan (1993) developed a technique of combining
instance-based learning and model-based learning that
is independent from the type of model learned. In-
stead of using the average of the stored class values of
the nearest neighbors for predicting values of unseen
examples, he proposes to compute the average of ad-
justed values based on the difference between the new
example and its nearest neighbors as predicted by the
learned model.

Although we have mentioned prototyping as part of
instance-based learning, the prototype construction it-
self can be regarded as a model-based technique. De-
pending on the strategy used to compute the proto-
types, prototypes are not restricted to being one of
the initial learning examples (Aha et al., 1991).

Salzberg (1991) describes a technique based on nested
generalized exemplars that uses hyper-rectangles de-
fined by two examples (comparable to upper and lower
bound) in a learning techniques that closely resembles
instance-based learning. For new examples, the class
of the smallest hyper-rectangle that contains the new
example is predicted. If the new example is not within
any hyper-rectangle, the algorithm predicts the class
of the closest generalized exemplar.

Locally weighted learning is another learning tech-
niques that combines building models with ideas from
instance based approaches (Atkeson et al., 1997). In
locally weighted learning, a distance measure is used
to restrict the span of learning examples over which a
model is built. To cover the entire example space, a
set of several models is used.

2.2. Related First Order Regression
Algorithms

Since parts of the TG and RIB algorithms will be used
as parts of the new TRENDI algorithm, we will dis-
cuss them in more detail than the other related ap-
proaches. The TG algorithm (Driessens et al., 2001)
incrementally builds first order regression trees. It uses
a user-defined refinement operator that originated in
the TILDE system (Blockeel & De Raedt, 1998). This
refinement operator uses a “language bias” to specify
which first order predicates can be used as possible
tests in internal nodes of the regression tree. This
language bias is application dependent and has to be
defined by the user of the system. The selection of the

!The RISE system estimates predictive accuracy using
the leave-one-out procedure.

Combining Model-Based and Instance-Based Learning for First Order Regression

tests is based on a number of statistics that are in-
crementally calculated for each leaf of the tree. These
statistics indicate when and how to split a leaf and
transform it into an internal node. Each leaf of the
tree predicts the same value for each of the examples
that is assigned to that leaf.

The RIB algorithm (Driessens & Ramon, 2003) does
nearest neighbor prediction using a relational distance

measure:
Z . 9
J distij

;=
Iy
where ¢; is the predicted value for example 7, g; is the
stored target value of example j, dist;; is the distance
between example ¢ and example 7 and the sum is com-
puted over all examples stored in memory. To prevent
division by 0, a small amount ¢ is added to this dis-
tance. Several methods of selecting which examples to
store and which to delete from the data-base are used.
The one that will be adopted for use in our hybrid ap-
proach, employs a user defined “maximum variance”
parameter M, for which the following holds:

(1)

|qi - (Jj|

distij <M (2)
This equation allows the algorithm (given certain con-
ditions that cause all predictions made by the RIB al-
gorithm to be guaranteed underestimates) to eliminate
examples from the data-base. While this parameter is
not always straightforward to derive for a given appli-
cation, for planning problems such as those encoun-
tered in the blocks world, it is usually defined as the
maximum difference between two different Q-values in
the problem?. On the other hand, the RIB algorithm
seems quite stable for slight variations of the value of
this parameter.

3. Combining Trees and Instances

The algorithm we introduce uses a combination of the
previously discussed TG and RIB algorithms. At a high
level, it uses a TG like algorithm to divide the example
space into regions and uses instance based predictions
in each of the sub-spaces. The algorithm builds a first
order decision tree incrementally and stores a copy of
the RIB algorithm at each of its leafs. Each instance
of RIB uses the “maximum variance” example selec-
tion method to control which learning examples are
stored and which are discarded or removed. Since the

In planning problems, a reward R is often only pre-
sented to the learning agent at the completion of the task.
Using the discounted total reward as a value function
causes the maximum difference between two different Q-
values to be (1 —y)R.

new algorithm uses both TREes aND Instances to make
predictions, we will refer to it as TRENDI.

The TG algorithm predicts the same value for each
example that is classified to a leaf. For each leaf and for
each test that can be used to further split the examples
in that leaf, it keeps statistics about the target values
of encountered examples and uses these to derive when
that leaf should be split. A standard F-test is used to
decide whether the target values of the examples that
are classified positively and negatively by a certain test
differ significantly. If such a test is found, the leaf is
split and two new leafs are created. It should also be
noted that TG uses a “minimal-sample-size” parameter
that forces the algorithm to collect a minimal amount
of data in a leaf before it can be split.

Since the predictions made by our algorithm in a single
leaf are not constant but made by an instance based
algorithm, we should not use the same splitting crite-
rion as TG. Instead, we want to split a leaf when we
discover that two instances of the RIB algorithm can
make better predictions in their respective sub-spaces
than a single RIB instance can for all the examples
sorted to that leaf.

We approximate predictive accuracies based on the
examples currently stored by the RIB algorithm in
the leaf under consideration using leave-one-out pre-
dictions. By summing the prediction error made by
the single RIB instance and the pair of RIB instances
built according to each possible split over all examples
stored in the leaf, we get an indication® of the im-
provement possible for each possible split. When the
improvement is large enough, we use the selected split
to create an internal node and add two new leafs to
the tree. In each of the leafs, we build a new instance
of the RIB algorithm using the corresponding subset
of learning examples from the original RIB. Note that
this also differs from the original TG algorithm, where
new leafs are started with reset statistics, so that every
split in TG causes a loss of learning experience. This
was done in TG to ensure example turnover, but is
unnecessary in the TRENDI algorithm because it uses
the example selection strategy of the RIB algorithm.
Algorithm 1 shows this approach in pseudo-code.

As the approach uses both the language bias needed
for TG and the first order distance measure used by
RIB, the TRENDI algorithm demands more user speci-
fication than any of the two approaches on their own.
However, we feel that the improved performance of the

technique (see Section 4) justifies these added require-

3In our current implementation of the algorithm, we use
the sum of the errors as stated. Another possibility would
be to compare the sum of the squared errors.

Combining Model-Based and Instance-Based Learning for First Order Regression

Algorithm 1 The TRENDI algorithm.
initialize by creating a tree with a single leaf with
an empty instance of the RIB algorithm
for (each learning example that becomes available)
do
sort the example down the tree using the tests of
the internal nodes until it reaches a leaf
update the instance of the RIB algorithm in the
leaf according to the new example
compare the predictive accuracy of the single RIB
with that of the two RIB instances resulting
from each of the possible test-extensions
if (an extension results in better predictions)
then
generate a new internal node using the
indicated test
grow two new leafs and divide the examples
from the original leaf over the new RIB
instances corresponding to the chosen test
end if
end for

ments.

The algorithm as described, has a number of param-
eters that can be tuned to deal with different envi-
ronments. The first parameter is comparable to the
“minimal-sample-size” parameter used by the TG al-
gorithm. Similarly, we can introduce a “minimal-
sample-size” parameter that specifies how many ex-
amples need to be stored in the local RIB instance,
before we allow the algorithm to split a leaf.

Since we use the RIB algorithm without change, we
can also use the “maximum variance” parameter M.
Where the RIB algorithm tries to eliminate as many
learning examples as possible to keep computing com-
plexity at a minimum, we might be able to use the
extra knowledge stored in these examples to decide on
which splits to use. There will be a strong interac-
tion between the values of the “minimal-sample-size”
parameter and the “maximum variance” parameter, as
the last one will try to limit the growth of the “sample-
size” used by RIB in each leaf.

The last parameter emerges from the idea that we want
predictions to improve when we split a leaf. Requir-
ing an improvement when we split a leaf, will make
the algorithm prefer smaller models, given equal per-
formance. A parameter b (0 < b < 1) can be used to
specify how much of an improvement is needed before
a leaf is split.

erToraier < b+ €rTorbefore (3)

4. Experimental Setup

To compare TRENDI with other available first-order
regression algorithms, we decided to use the RRL al-
gorithm as described by Driessens et al. (2001) and the
Blocks World as a test-case. The blocks world is used
with a varying number of blocks. During training, the
number of blocks is varied between 3 and 5, and the re-
sulting strategies are tested in worlds with 3-10 blocks.
We also supply the algorithm with 5 guided traces in
a world with 10 blocks every 50 learning episodes as
specified by Driessens and Dzeroski (2004).

We ran tests with the “Stack”-goal, i.e., trying to build
one large stack of blocks, with no specific ordering of
the blocks required, and the “On(A,B)”-goal, where
two specific blocks need to be placed on top of another.
This last goal is parameterized. The identity of the two
blocks varies in each learning and testing episode. The
last goal often considered with the RRL algorithm,
“Unstacking”, is easily solved by the RIB regression
algorithm alone (Driessens & Ramon, 2003), so little
or no improvement was possible for that task.

The performance graphs are generated by extracting
the learned Q-function every 100 episodes, translat-
ing it into a deterministic policy (i.e., no exploration
is included while testing) and testing it on 200 ran-
domly generated starting positions with the number of
blocks varying from 3 to 10. The Y-axis on the graphs
indicates the percentage of tests in which the learned
strategy reaches the desired goal state in the minimum
number of steps possible, i.e., when the learned policy
shows optimal behavior. The graphs show averaged
results over 10 repeated experiments.

4.1. Blocks World Language Bias

The use of a TG like algorithm which builds first order
decision trees requires the specification of a language
bias for the blocks world. We used the same language
bias as was used in previous experiments with RRL-
TG in the blocks world (Driessens & Dzeroski, 2004).
Through the use of variables, the root of the tree ref-
erenced the 2 blocks included in the move action, and
for the on(A,B) goal also the blocks included in the
goal statement and included a count of the number of
blocks in the current state. Possible tests available to
the algorithm for use in lower nodes of the tree con-
sisted of the following predicates?:

e clear/2 tests whether no block is on top of the
referenced block in the given state

4All of these predicates include a reference to a blocks

world state as the first argument.

Combining Model-Based and Instance-Based Learning for First Order Regression

e on/3 indicates whether a specified block is on top
of another specified block or on the floor in the
given state

e cqual/2 tests whether two variables reference the
same block (or the floor)

e above/3 tests whether a specified block is part of
the stack on top of another given block

e compheight/3: compares the height of two differ-
ent blocks, or the height of a block to a constant
value (range 0-10)

e compdiff/4: calculates the difference between
the height of a block and a previously initiated
number-variable (such as the height of another
block or the number of blocks) and compares this
value to a constant value or the height of another
block.

4.2. Blocks World Distance

The instance based part of our algorithm requires a
distance to be defined between different learning exam-
ples, in this test case, between different (state, action)
pairs in the blocks world. We used the same distance
measure as defined by Driessens and Ramon (2003),
which is computed as follows:

1. Try to rename the blocks so that block-names that
appear in the action (and possibly in the goal)
match between the two (state,action) pairs. If
this is not possible, add a penalty to your distance
for each mismatch. Rename each block that does
not appear in the goal or the action to the same
name.

“

2. To compute the distance between the two “re-
named” states, regard each state (with renamed
blocks) as a set of stacks and calculate the dis-
tance between these two sets using the matching-
distance between sets based on the distance be-
tween the stacks of blocks (Ramon & Bruynooghe,
2001).

3. To compute the distance between two stacks of
blocks, transform each stack into a string by read-
ing the names of the blocks from the top of the
stack to the bottom, and compute the edit dis-
tance (Wagner & Fischer, 1974) between the re-
sulting strings.

This application specific distance is not only easier
(and thus faster) to compute than a more general first
order distance, it also incorporates some background
information about the blocks world, such as the im-
portance of stacks and the identity of key blocks.

5. Experimental results
5.1. Parameter Influence

Since the existing regression algorithms used by RRL
have the most difficulties with the ’On(A,B)’ goal, we
focused our tests on that task. We tested the influence
of the RIB “maximum variance” parameter M and the
“minimal-sample-size” mss parameter on a combina-
tion of different values. We let the M parameter vary
between its standard value “0.1” (as used for RIB®) and
1.5, 2 and 4 times that value. The minimal sample size
mms, we varied between 25, 50, 100 and 200. We show
and discuss the most interesting results below.

On(a,b) - Rib selection high (M x 1)

0.95
T o9}
E
T
® 0.85
(o]
©
2 o8 .
® 'mss = 25" —+—
075 o %6 @ 'mss = 50" - A
;. e® e ‘mss = 100" -0
(4 ‘mss = 200" @
0.7 @ L L I
0 500 1000 1500 2000 2500

Number of Episodes

Figure 1. The influence of minimal sample size on the per-
formance when example selection by RIB is high

As illustrated by Figure 1, larger minimal sample sizes
lead to slower learning rates. This implies that the
combination of trees and instance based prediction in-
deed leads to better predictions than instance based
predictions on their own. Namely, the larger the min-
imal sample size is required to be, the longer the
TRENDI algorithm will be equivalent to the RIB al-
gorithm or consist of just a few instances thereof.

This behavior is observed for all values of the “max-
imum variance” M, but is most apparent when RIB
uses high example selection, i.e., for low M values.
The larger minimal sample sizes also cause a significant
increase in computational complexity, as the TRENDI
algorithm relies more on the computations within each
RIB instance. This is illustrated by the algorithm’s ex-
ecution times shown in Table 1.

Lowering the amount of example selection used by the
RIB algorithm can lead to better performance for the
TRENDI approach. Figure 2 illustrates this with a

®The experiments use a reward of 1.0 for an accom-
plished task and a discount factor v = 0.9.

Combining Model-Based and Instance-Based Learning for First Order Regression

On(a,b) - Minimum Sample Size = 100
1 T T T T

e
,Q’QQ‘&C §§>,
0.95 | o9 ><><><><
x
T o9t 1
S
&
s 085Ff 1
(o]
o
Z osf 1
Mx 1 ——
0.75 | Mx 1.5 —x— -
Mx2 0
; Mx4 e
0.7 L— ‘ s
0 500 1000 1500 2000 2500

Number of Episodes

Figure 2. The influence of the RIB selection parameter on
the performance with a minimal sample size of 100

medium minimal sample size of 100. Unfortunately,
this better learning performance is accompanied by
larger computation times and often, larger resulting
trees. The good news is that some example selection
(M x 2) performs as well as almost no example selec-
tion (M x 4), without a large increase in computation
times.

Table 1 illustrates this with the average runtime of a
single experiment for a number of different M and mss
value combinations. The execution times include both
learning and making predictions, as both are required
during the experiment. The execution times for the
set-up with almost no example selection by the RIB
algorithm (M x 4) vary largely between experiments.
For the case with mms = 100 for example, we recorded
execution times ranging from 624 CPU seconds (com-
parable to other values of M) to almost 20000 CPU
seconds. All experiments were performed on Pentium
4 machines running Linux, working at 2.6GHz with
512 MB RAM. Not shown on the graph, we did notice
that when combined with small minimal sample sizes,
low RIB example selection can slow down learning ini-
tially. This is probably caused by the higher number of
learning examples with incorrect Q-values that influ-
ence the tree structure at the start of the experiment.

Table 1. Average run-times in CPU seconds of one exper-
iment with varying minimal sample size and RIB example
selection

M\mss | >25 >50 >100 > 200
x 1 182 344 606 1161
x 1.5 175 328 670 1264
X 2 183 333 677 1295
x 4 3227 3590 6229 15118

Table 2 shows the average size of the resulting tree
for varying values of the mss and M parameters. As
would be expected, larger mss values lead to smaller
trees. One would expect less RIB example selection to
have the same influence, and this seems to be the case
when going from very high selection (x1) to medium
selection (x1.5 and x2), but this trend does not con-
tinue for almost no example selection (x4). However,
this last setting produces trees with largely varying
sizes across different experiments. For the mss = 100
case, for example, the size of the learned tree ranged
from 4 nodes to 23 nodes. This is tightly connected
to the variance in execution times, with low tree sizes
resulting in large computation times. For comparison,
the TG algorithm, with a minimal sample size of 200
examples, produces trees with an average of 28 leafs.

Table 2. Average number of leafs in the resulting tree with
varying minimal sample size and RIB example selection

M\mss | >25 >50 >100 > 200
x 1 76 36 19 10
x 1.5 81 41 21 11
X 2 83 40 21 9.9
x 4 68 34 15 4.6

All previous experiments were performed with a b-
parameter (see Equation 3) set to 1.0. Increasing the
error improvement that needs to be made before choos-
ing to split a leaf node seems to have little effect for val-
ues very close to 1.0, but raising the boundary quickly
leads the TRENDI algorithm to give up on building
a tree, and behave even worse than a single RIB al-
gorithm due to the larger M-value and its influence
on example selection. Figure 3 compares the perfor-
mance of the TRENDI algorithm for different values of
b with mss = 100 and M x 2. In the experiment with
b = 0.95, TRENDI built trees with only 4 to 5 leafs.
For comparison, we included the learning curve of the
standard RIB algorithm in the graph. Thus, it seems
that just requiring an improvement as a precondition
to splitting a leaf is the best strategy.

5.2. Comparing to other algorithms

Next we compare the performance of the TRENDI al-
gorithm with that of the three existing relational re-
gression algorithms that have so far been used within
the RRL setting. For TRENDI , we use the results ob-
tained with parameter values b = 1.0, mss = 100 and
M x 2. Figure 4 shows the resulting graphs.

It is clear that TRENDI outperforms both of its “par-

Combining Model-Based and Instance-Based Learning for First Order Regression

On(a,b) - Error Improvement Parameter

0.95

09 r

0.85 |

Average Reward

0.8

0.75 |

0.7

0 500 1000 1500 2000 2500
Number of Episodes

Figure 3. The influence of the error improvement parame-
ter on TRENDI performance

On(a,b)
1 . . ,
PR o
0000 gessgeee
oogeeeee® e Lt
09 | o PR e v A
pgxi%&%xxxx N R
= ,g}x et
S ,
: 08 e 1
o -,Zﬁ
g 0[P
> d‘y’
< . TG ——
06 | ¥ RIB" —x— |
! 'KBR @
o "TRENDI' @
0.5 i . TG (Episodes*s)’ -—-=--
o 500 1000 1500 2000 2500

Number of Episodes

Figure 4. Comparing the TRENDI algorithm with other
first order regression algorithms used in RRL on the
On(a,b) goal

ents”. Not only does it perform significantly® better
then both TG and RIB , but when comparing the execu-
tion times of the experiments (Tables 1 and 3), the new
algorithm also succeeds in retaining some of the com-
putational efficiency of model-based algorithms. Al-
though TRENDI retains an average of approximately
1200 examples in all the RIB instances combined, com-
pared to approximately 730 in the standard RIB algo-
rithm, the fact that TRENDI does not deal with all of
these examples at the same time, makes it computa-
tionally much more efficient. Since the TG algorithm
is still quite a bit faster than TRENDI we included an
experiment that gave TG more episodes to learn from.

5The student’s t-test indicates t-values of 5.3 and 7.1
for comparison to TG and RIB respectively, where only a
value of 3.92 is required for a 0.001 probability that the
two techniques perform equally well.

As shown on the graph, this still does not seem to
help TG in reaching the same level of performance as
reached with the TRENDI algorithm.

Table 3. Average run-times in CPU seconds of the previous
RRL systems

System CPU Time
TG 31

TG (12500 Episodes) 294
RIB 5000
KBR 150000
TRENDI (mss = 100, M x 2) 677

Although the difference is small”, KBR still has the up-
per hand when it comes to performance gain per learn-
ing episode. However, the computational complexity
of KBR, and the very long learning and prediction times
could limit the practical use of this extra performance.

Stacking
1 . N o .
Q] g ™ hd e § ,,,,, R
08l o
[
°
5 j
06 -
b <
[0} ;
s 04ri x
> Fi /
< E
TG ——
02 [/ RIB %
‘ 'KBR’ -0
0) ‘ 'TRENDI —e
0 100 200 300 400 500

Number of Episodes

Figure 5. Comparing the TRENDI algorithm with previous
first order regression algorithms on the Stack goal

On the “Stacking” goal, the TRENDI and KBR algo-
rithm again perform similarly, and both again better
than the TG and RIB algorithms. Figure 5 also shows
that the TRENDI algorithm causes a gentler develop-
ment of performance, comparable to that of instance-
based approaches. The step-wise improvement of a
model building algorithm like TG is avoided and a more
robust development of the learned policy is obtained.

6. Conclusions

In this paper, we introduced a new incremental rela-
tional regression algorithm TRENDI that combines re-
lational decision trees with (relational) instance based

"A t-value of 1.92 on the student’s t-test, indicating a
probability of 0.08 that the two perform equally well.

Combining Model-Based and Instance-Based Learning for First Order Regression

regression to make predictions on continuous target
values using relational learning data. This combina-
tion of model-based and instance-based learning tech-
niques retains the predictive accuracy and robustness
of instance-based techniques as well as having a com-
putational efficiency which is comparable to model-
based learning. However, it does eliminate the coarse
approximations that usually accompany model-based
techniques.

In an experimental evaluation using relational rein-
forcement learning and the blocks world as a test-case,
the TRENDI algorithm performed significantly better
than its two “parent”-techniques TG and RIB and com-
petitive with the much slower KBR algorithm.

A downside of the relational tree based algorithm, is
that decisions made early in the learning experiment
(tests chosen at the top of the tree), can not be un-
done. This might complicate the learning task at later
stages in applications where data is only available in-
crementally, such as in e.g. reinforcement learning. In
the future, we intend to investigate the combination
of rule-based and instance-based learning as another
approach to relational regression. The more loosely
structured model that results from rule-learning (i.e.,
a rule-set or decision list) might make it easier to adapt
the learned model in later stages of learning.

Although we’ve only tested the new algorithm on rela-
tional reinforcement learning, and although the algo-
rithm was made incremental with this application in
mind, the technique is readily applicable to other (re-
lational) regression problems. In future work, we in-
tend to experiment with TRENDI on other (relational)
regression problems, possibly also in non-incremental
settings.

Acknowledgements

Part of this research was performed during a sabbat-
ical exchange funded by the PASCAL network of ex-
cellence.

References

Aha, D., Kibler, D., & Albert, M. (1991). Instance-
based learning algorithms. Machine Learning, 6, 37—
66.

Atkeson, C. G., Moore, A. W., & Schaal, S. (1997).
Locally weighted learning. Artificial Intelligence Re-
view, 11, 11-73.

Blockeel, H., & De Raedt, L. (1998). Top-down induc-
tion of first order logical decision trees. Artificial
Intelligence, 101, 285-297.

Domingos, P. (1996). Unifying instance-based and
rule-based induction. Machine Learning, 24, 141—
168.

Driessens, K., & Dzeroski, S. (2004). Integrating guid-
ance into relational reinforcement learning. Machine
Learning, 57, 271-304.

Driessens, K., & Ramon, J. (2003). Relational instance
based regression for relational reinforcement learn-
ing. Proceedings of the Twentieth International Con-
ference on Machine Learning (pp. 123-130). AAAI
Press.

Driessens, K., Ramon, J., & Blockeel, H. (2001).
Speeding up relational reinforcement learning
through the use of an incremental first order de-
cision tree learner. Proceedings of the 13th Euro-
pean Conference on Machine Learning (pp. 97-108).
Springer-Verlag.

Dzeroski, S., De Raedt, L., & Driessens, K. (2001). Re-
lational reinforcement learning. Machine Learning,
48, 7T-52.

Dzeroski, S., De Raedt, L., & Blockeel, H. (1998). Re-
lational reinforcement learning. Proceedings of the
15th International Conference on Machine Learning
(pp. 136-143). Morgan Kaufmann.

Freidman, J., Bentley, J., & Finkel, R. (1977). An
algorithm for finding best matches in logarithmic
expected time. ACM Trans. Math. Softw., 3, 209—
226.

Gértner, T., Driessens, K., & Ramon, J. (2003). Graph
kernels and Gaussian processes for relational rein-
forcement learning. Inductive Logic Programming,
13th International Conference, ILP 2003, Proceed-
ings (pp. 146-163). Springer.

Moore, A. (1991). An introductory tutorial on kd-trees
(Technical Report). Robotics Institute, Carnegie
Mellon University.

Quinlan, J. (1993). Combining instance-based and
model-based learning. Proceedings of the 10th Inter-
national Conference on Machine Learning. Morgan
Kaufmann.

Ramon, J., & Bruynooghe, M. (2001). A polynomial
time computable metric between point sets. Acta
Informatica, 37, 765-780.

Salzberg, S. (1991). A nearest hyperrectangle learning
method. Machine Learning, 6, 252-276.

Wagner, R., & Fischer, M. (1974). The string to string
correction problem. Journal of the ACM, 21, 168—
173.

