
A Practical Generalization of Fourier-based Learning

Adam Drake acd2@cs.byu.edu
Dan Ventura ventura@cs.byu.edu

Computer Science Department, Brigham Young University, Provo, UT 84602 USA

Abstract

This paper presents a search algorithm for
finding functions that are highly correlated
with an arbitrary set of data. The functions
found by the search can be used to approx-
imate the unknown function that generated
the data. A special case of this approach is a
method for learning Fourier representations.
Empirical results demonstrate that on typi-
cal real-world problems the most highly cor-
related functions can be found very quickly,
while combinations of these functions provide
good approximations of the unknown func-
tion.

1. Introduction

The discrete Fourier transform converts a function into
a unique spectral representation in which it is repre-
sented as a linear combination of Fourier basis func-
tions. The ability to represent functions as a com-
bination of basis functions led to the development of
learning algorithms based on the Fourier transform.
These Fourier-based learning algorithms, which have
been used primarily in the field of computational learn-
ing theory, learn functions by approximating the coef-
ficients of the most highly correlated basis functions.

The first Fourier-based learning algorithm was intro-
duced by Linial, Mansour, and Nisan (1993). They
presented an algorithm (hereafter referred to as the
LMN algorithm) that learns functions by approximat-
ing the coefficients of the low-order basis functions.
Given sufficient training examples drawn from a uni-
form distribution, the LMN algorithm can effectively
learn any function whose spectral representation is
concentrated on the low-order coefficients.

Another important Fourier-based learning algorithm

Appearing in Proceedings of the 22nd International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

was introduced by Kushilevitz and Mansour (1993).
Their algorithm (hereafter referred to as the KM algo-
rithm) does not require a function’s spectral represen-
tation to be concentrated on the low-order coefficients.
Instead, it recursively searches the space of Fourier ba-
sis functions to find, with high probability, the basis
functions with the largest coefficients. It relies on a
membership oracle (a black box that can be queried
to learn the value of the function at any point) to ef-
ficiently carry out its search.

These algorithms have been successfully used to prove
learnability results for many classes of problems. How-
ever, there has been little work in applying Fourier-
based algorithms to real-world problems. The primary
difficulty in applying Fourier techniques to real-world
problems is that the number of Fourier basis func-
tions, and the time required to compute the Fourier
transform, is exponential in the number of inputs to a
function. The LMN and KM algorithms avoid expo-
nential complexity by imposing restrictions that limit
real-world applicability.

The LMN algorithm avoids exponential complexity by
approximating only the low-order coefficients. This re-
striction is undesirable because it limits the set of func-
tions that can effectively learned. Furthermore, there
is generally nothing known about the spectral repre-
sentation of a real-world learning problem, making it
impossible to know beforehand whether the restriction
to low-order coefficients is acceptable.

The KM algorithm avoids exponential complexity by
relying on a membership oracle to guide its search for
large coefficients. The requirement of a membership
oracle greatly limits the applicability of the algorithm.
Mansour and Sahar (2000) presented results of effec-
tively applying the KM algorithm to a real-world prob-
lem for which a membership oracle exists. Unfortu-
nately, however, the existence of a membership oracle
is not typical of many learning scenarios.

The main result of this paper, which may be useful
beyond the field of machine learning, is a new search

A Practical Generalization of Fourier-based Learning

algorithm that efficiently searches a space of functions
to find those that are most highly correlated with an
arbitrary set of data. A special case of this algorithm
is a method for finding the most highly correlated
Fourier basis functions. This search allows Fourier-
based learning algorithms to overcome the limitations
of previous approaches.

In addition to describing the search algorithm and
demonstrating its effectiveness, results of learning real-
world problems with the results of the search are pre-
sented. The first approach is a standard Fourier-based
approach of learning a linear combination of Fourier
basis functions. However, because the search algo-
rithm can be used to find other highly correlated func-
tions, the basic Fourier approach is generalized to al-
low other types of functions to be used in the linear
combination. This extension, which is a departure
from Fourier theory, has been found to be very use-
ful in practice.

2. Definitions and Notation

Previous work in Fourier-based learning has been con-
cerned with Boolean functions and the Fourier trans-
form for Boolean functions, which is also known as
a Walsh transform. The algorithms and results pre-
sented in this paper are also for Boolean functions,
although many of the ideas presented could be applied
to discrete-valued functions and the more general dis-
crete Fourier transform.

Let f be a Boolean function of the form f : {0, 1}n →
{1,−1} where n is the number of inputs. There are
2n Fourier basis functions for a function of n Boolean
inputs, each indexed by a binary number α ∈ {0, 1}n.
Each basis function χα is defined as follows:

χα(x) =
{

+1 : if
∑n−1

i=0 xiαi is even
−1 : if

∑n−1
i=0 xiαi is odd

(1)

where x ∈ {0, 1}n. Note that each basis function com-
putes the parity (or logical XOR) of a subset of the
inputs. Specifically, basis function χα computes the
parity of those inputs xi for which αi = 1. There is
one basis function for each possible subset of inputs.

The Fourier coefficients f̂(α) are defined by:

f̂(α) =
1
2n

2n−1∑
x=0

f(x)χα(x) (2)

Thus, each coefficient is computed by taking the dot
product of the outputs of functions f and χα and
therefore measures the correlation between f and χα.
In other words, basis functions that are highly corre-

lated with f have coefficients with large absolute val-
ues. (A negative coefficient indicates an inverse corre-
lation.)

Given the Fourier basis functions and coefficients as
defined above, any Boolean function f can be repre-
sented as a linear combination of the basis functions:

f(x) =
2n−1∑
α=0

f̂(α)χα(x) (3)

A Fourier-based learning algorithm can approximate
the Fourier coefficients when the function is only par-
tially known, as is the case in typical learning scenar-
ios. Let X be a set of available training data, with x
being a particular training example. Then the Fourier
coefficients can be approximated by the following:

˜̂
f(α) =

1
|X|

∑
x∈X

f(x)χα(x) (4)

As described previously, the search algorithm pre-
sented in this paper can find functions other than the
Fourier basis functions. In particular, two additional
types of Boolean functions are considered: functions
that compute the conjunction (logical AND) of sub-
sets of the inputs and functions that compute the dis-
junction (logical OR) of subsets of the inputs. These
functions can be defined in a manner similar to the
Fourier basis functions as follows:

ANDα(x) =
{

+1 : if
∑n−1

i=0 xiαi =
∑n−1

i=0 αi

−1 : if
∑n−1

i=0 xiαi <
∑n−1

i=0 αi
(5)

ORα(x) =
{

+1 : if
∑n−1

i=0 xiαi > 0
−1 : if

∑n−1
i=0 xiαi = 0

(6)

Coefficients for the AND and OR functions can be
computed in the same manner as shown in (4) simply
by replacing χα with either ANDα or ORα. These
“coefficients” measure the correlation with the func-
tion f , but otherwise do not have the same meaning
as the Fourier basis function coefficients. Neither the
AND nor the OR functions form a basis for the space
of Boolean functions, and the coefficients do not gen-
erally yield a linear combination for representing f .

As each AND, OR, and parity function measures the
correlation between itself and the training data, we
refer to these functions as correlation functions.

3. A Best-first Search for Correlation
Functions

This section presents the algorithm for finding correla-
tion functions that are highly correlated with an arbi-
trary set of data. Empirical results show that although

A Practical Generalization of Fourier-based Learning

the search space is exponential in size, it is possible to
find solutions while exploring only a fraction of the
space.

3.1. The Algorithm

The algorithm uses a best-first search to explore the
possible subsets of inputs over which a particular cor-
relation function could be defined. The search space
can be represented as a binary tree of nodes, n levels
deep. Each node represents a partially or completely
specified correlation function label. At the top of the
tree is a node with a completely unspecified label. At
each successive level of the tree one additional digit of
the label is set, until finally at the leaf nodes the labels
are completely specified. There are 2n leaf nodes, one
for each possible correlation function.

A best-first search is beneficial because as each digit
of a correlation function label is set, some informa-
tion can be obtained about the maximum coefficient of
any correlation function whose label shares that digit
value. By exploring nodes that could potentially lead
to higher coefficients first, it is possible to find the
most highly correlated functions while exploring only
a fraction of the search space.

Consider the information gained when digit 0 of an
AND function’s label is set to 1. All AND functions
for which α0 = 1 include input x0 in their calculation.
Thus, any training examples for which x0 = 0 will be
classified as false. If there are two examples, x and
x′, such that x0 = x′0 = 0 but f(x) 6= f(x′) then no
ANDα such that α0 = 1 will be able to correctly clas-
sify both examples. In fact, they will correctly classify
one and only one of them, regardless of what the other
digits in the label are. Each conflicting pair of exam-
ples reduces the maximum possible coefficient value of
functions for which α0 = 1 by 2. (Technically, the co-
efficient value is reduced by 2/|X|, but for simplicity
the normalization can be ignored during search.)

In describing the algorithm more precisely, some ad-
ditional notation will be useful. As before, let X be
the set of training examples, or known points of the
target function f , with each training example being
a pair of the form (x,f(x)), where x ∈ {0, 1}n and
f(x) ∈ {−1, 1}. Let α ∈ {0, 1}n be the label of some
correlation function C, and let Cα be the correlation
function with label α. As described in section 2, the
digits of α indicate the subset of inputs over which Cα

is defined. Let β ∈ {0, 1, ∗}n be a correlation function
label in which some digits may be unspecified, with
each ∗ indicating an unspecified digit. We shall say
that α ⊆ β if for 0 ≤ i < n, αi = βi or βi = ∗. Fi-
nally, let f̂max(β) be the maximum coefficient of any

correlation function Cα such that α ⊆ β.

The search algorithm is efficiently implemented with a
priority queue of nodes, which sorts nodes in decreas-
ing order of f̂max(β). Each node contains a correlation
function label β, a set of training examples Xβ , and a
variable countβ . The root node of the search is initial-
ized with a completely unspecified correlation function
(β = ∗n), all of the training examples (Xβ = X), and
countβ = 0.

The algorithm begins by inserting the root node into
a priority queue. Then, it enters a loop that continues
until the desired number of correlation functions has
been found. Each time through the loop, the node at
the front of the queue is removed. If the label β of that
node is completely specified, then β is added to the set
of highly correlated functions. (Because the node with
the highest value for f̂max(β) is always at the front of
the priority queue, a solution node at the front of the
queue is certain to be at least as good as any other
potential solution.) If β is not completely specified,
then one of the unspecified digits is selected, and the
two child nodes that result from setting that digit to
0 and 1 are created and inserted into the queue.

The value of f̂max(β) can be computed for any internal
node as follows:

f̂max(β) = abs(countβ) + |Xβ |

where abs(countβ) is the absolute value of countβ .
Each time a child node is created and given a label
β, the examples of the parent node are checked to see
if any pairs of examples cannot be both correctly clas-
sified by any Cα such that α ⊆ β. Any such pairs
of examples are removed. Because the unnormalized
coefficient of a correlation function is reduced by two
for each pair of examples such that one and only one
of them can be classified correctly, the number of ex-
amples removed in this way is equal to the reduction
in f̂max(β). When finding Fourier basis (XOR) func-
tions, countβ is always zero. Its use when finding AND
and OR functions is described later.

The value of f̂max(β) is computed for leaf nodes by
the following:

f̂max(β) = abs(countβ ± |Xβ |)

where |Xβ | is subtracted from countβ if Xβ contains
positive examples, and added to countβ if Xβ contains
negative examples. (At leaf nodes, there will never be
both positive and negative examples in Xβ .) The value
of f̂max(β) at a leaf node is equivalent to the absolute
value of f̂(β).

A Practical Generalization of Fourier-based Learning

FindCorrelationFunctions(X, numFunctionsToF ind)
{

initialize a node with β = ∗n and Xβ = X
insert initial node into priority queue
M ← {}

while |M | < numFunctionsToF ind
{

remove the node at the front of the queue

if for that node βi 6= ∗ for 0 ≤ i < n, M ←M ∪ β
else
{

determine which digit of β to set next
create the 0 and 1 child nodes
insert the nodes into the priority queue
}
}

return M
}

Figure 1. General algorithm for finding the functions that
are most highly correlated with an arbitrary set of data.

The order in which digits of β are set is chosen with the
intent of reducing the number of nodes that must be
visited. The method used in our current implementa-
tion is to select the digit that minimizes the following:

arg mini(min(f̂max(βi = 0), f̂max(βi = 1))

in which f̂max(βi = 0) and f̂max(βi = 1) indicate the
values of f̂max(β) for the child nodes of the current
node. This heuristic selects the digit that causes the
greatest reduction in f̂max(β) for either child.

The intuition behind this heuristic is that larger de-
creases in f̂max(β) indicate more information gain.
Consider the worst case, in which f̂max(β) does not de-
crease for either child. In this case, the algorithm has
been given no useful information regarding the maxi-
mum coefficient down each path.

The algorithm for finding correlation functions is
shown in Figure 1. The only portion of the algorithm
that is significantly different for each type of correla-
tion function is the step that creates the 1 child node
(the node that is created by setting the selected digit
to 1). For each type of correlation function there is a
unique way of creating this child node. The methods
for creating the 0 and 1 child nodes are depicted in
Figures 2 and 3.

When the 0 child node is created, the process of de-
termining which examples to remove from the child is
fairly straightforward. Pairs of examples are removed

CreateZeroChild(Node parent, int i)
{

Node child
child.β ← parent.β
child.βi ← 0
child.Xβ ← parent.Xβ

child.countβ ← parent.countβ

for each x, x′ ∈ child.Xβ

if f(x) 6= f(x′) and ∀j (βj 6= ∗ ∨ xj = x′
j)

remove x and x′ from child.Xβ

return child
}

Figure 2. Method for creating the “0” child of a node. i is
the digit of β to be set in the child.

if the examples’ inputs differ in only those digits of β
that have previously been specified and if they have
different outputs. The reason for this is that if βi = 0,
then any examples that differ only in the ith input
should not have different outputs, because that input
will be ignored. If a pair of such examples do have
different outputs, all Cα such that α ⊆ β will classify
one and only one of them correctly.

The method for determining which examples should
not be added to the 1 child is identical to that of the
0 child, except that some preprocessing must be done
to the examples. For nodes representing parity func-
tions, the preprocessing involves inverting the output
of all examples such that xi = 1, where i is the digit
currently being set in the label. The reason for this
step is that if βi = 1 then χβ(x) will be inverted for
each example x such that xi = 1, while its output will
remain the same if xi = 0. By inverting the output of
each x such that xi = 1, the same example removing
method used to create the 0 child can be used, while
correctly accounting for how the parity functions clas-
sify the examples.

The preprocessing steps required for AND and OR
functions are quite similar to each other. For AND
functions, each example x for which xi = 0 is removed,
and its output is added to countβ . These examples
are removed because as soon as there is an i such that
βi = 1 and xi = 0 it is certain that ANDα(x) = −1
for all α ⊆ β. By adding f(x) to countβ , countβ keeps
a running total of how many examples whose classi-
fications are already determined can still be classified
correctly. Note that a positive and negative example
will cancel each other out, which has the same effect
on f̂max(β) as removing two examples from Xβ . OR
functions are treated in the same way as AND func-

A Practical Generalization of Fourier-based Learning

CreateOneChild(Node parent, int i)
{

Node child
child.β ← parent.β
child.βi ← 1
child.Xβ ← parent.Xβ

child.countβ ← parent.countβ

if parent represents a parity function
{

for each x ∈ child.Xβ such that xi = 1
f(x)← −f(x)

}
if parent represents an AND function
{

for each x ∈ child.Xβ such that xi = 0
child.countβ ← child.countβ + f(x)
remove x from child.Xβ

}
if parent represents an OR function
{

for each x ∈ child.Xβ such that xi = 1
child.countβ ← child.countβ + f(x)
remove x from child.Xβ

}

for each x, x′ ∈ child.Xβ

if f(x) 6= f(x′) and ∀j (βj 6= ∗ ∨ xj = x′
j)

remove x and x′ from child.Xβ

return child
}

Figure 3. Method for creating the “1” child of a node. i is
the digit of β to be set in the child.

tions, except that examples are removed if xi = 1,
which indicates that ORα(x) = 1 for all α ⊆ β.

The algorithm can be made to search for multiple
types of correlation functions simultaneously simply
by initializing the priority queue with one node for
each type of correlation function. When finding multi-
ple types of correlations, the algorithm can be thought
of as searching multiple search trees simultaneously,
switching between trees to explore the path that cur-
rently looks most promising. Some means of determin-
ing the type of correlation function a node represents
must be added so that nodes can be correctly handled
by the algorithm (for example, by adding a type field
to each node).

The following theorem makes the claim for the correct-
ness of the algorithm.

Theorem 1. The best-first search algorithm described
in Figure 1 returns the labels of the correlation func-
tions that are most highly correlated with X.

Proof Sketch. The proof of the theorem follows from
two facts. First, the structure of the search space en-
sures that all possible correlation functions are consid-
ered. And second, because the node with the highest
value of f̂max(β) is always at the front of the priority
queue, correlation functions are always added to the
solution set in order of highest coefficient value. (This
assumes that f̂max(β) is correctly computed for each
node.)

The time complexity of the algorithm is O(mnk log k),
where n is the number of inputs, k is the number of
training examples, and m is the number of nodes vis-
ited during the search. The nk log k term indicates the
time required to create the child nodes of the current
node, and assumes that training examples are stored
in a structure that allows lookups in log k time. The
number of nodes visited, m, may vary from n to 2n−1.
Thus, the algorithm is ultimately bounded by an ex-
ponential term, and relies on the assumption that in
practice m will not approach that bound. Experiments
on real-world problems suggest that typical searches
explore only a fraction of the search space.

3.2. Empirical Evaluation

To test the algorithm, nine data sets were selected from
the UCI machine learning repository (1998). Each
data set represents a Boolean classification problem,
although several of the sets contain non-Boolean input
features, which were encoded into binary as follows.
Real-valued inputs were encoded as a single binary
value, indicating whether the value was above or below
some threshold. (The threshold was chosen by sorting
examples in increasing order of that attribute value,
considering all thresholds that lie at the midpoints be-
tween the values of adjacent examples, and selecting
the threshold that best separated the examples into
positive and negative classes.) Nominal-valued inputs
were encoded into binary using the minimum number
of bits needed to encode all possible values.

Table 1 shows the number of nodes expanded to find
the 1 and 1,000 parity functions that are most highly
correlated with each data set, compared to the total
number of possible node expansions. (Note that the
Pima data set, a problem with 8 inputs, has only 256
basis functions, and therefore has no data for finding
1,000 functions.) As can be seen, only a small fraction
of the search space needs to be explored to find a large
number of parity functions.

The run time required by the algorithm was also very
small. Table 2 shows the time required by the algo-
rithm to find those same numbers of functions, com-
pared to the time required to compute the fast Walsh

A Practical Generalization of Fourier-based Learning

Table 1. Nodes visited to find the 1 and 1,000 most highly
correlated parity functions, compared to the total number
of possible nodes. The number of attributes for each data
set is shown in parentheses.

Data set 1 1,000 Total possible

Chess (37) 209 2,010 137,438,953,472
German (24) 197 3,378 16,777,215
Heart (16) 73 2,804 65,535
Pima (8) 8 n/a 256
SPECT (22) 1,115 114,868 4,194,303
Voting (16) 16 2,514 65,535
Wisc 1 (36) 540 126,474 68,719,476,735
Wisc 2 (33) 322 3,621 8,589,934,592
Wisc 3 (30) 44 2,445 1,073,741,824

Table 2. Time required to find the 1 and 1,000 most highly
correlated parity functions, compared to the time required
to compute the fast Walsh transform. The number of at-
tributes for each data set is shown in parentheses.

Data set 1 1,000 FWT

Chess (37) .5 s 1.2 s 11+ hrs
German (24) < .1 s .8 s 4.5 s
Heart (16) < .1 s < .1 s < .1 s
Pima (8) < .1 s n/a < .1 s
SPECT (22) .3 s 6.4 s 1.0 s
Voting (16) < .1 s < .1 s < .1 s
Wisc 1 (36) .5 s 37.6 s 5+ hrs
Wisc 2 (33) < .1 s .2 s 45 min
Wisc 3 (30) < .1 s .2 s 5 min

transform (FWT). The FWT, which computes the en-
tire spectrum in O(n2n) time, is a Boolean version
of the fast Fourier transform algorithm. Although the
FWT can quickly calculate the Fourier spectra of prob-
lems for which n is small, its run time increases dra-
matically as n increases. (Note that for the Chess,
Wisc 1, and Wisc 2 datasets the standard FWT al-
gorithm requires more memory than can be allocated
and addressed in a typical 32-bit workstation. The
run times shown are estimates based on observing the
growth in run time as n increases.)

Results for finding highly correlated AND and OR
functions are generally even better. This is largely
due to the fact that the output of an AND or OR
function can often be determined by examining a sin-
gle input, while the output of a parity function cannot
be determined until all xi such that βi = 1 have been
checked.

Figure 4. A plot of the number of nodes expanded to find
the most highly correlated Fourier basis function vs. the
number of inputs. The trendline is a least squares fit of a
single-term polynomial to the data.

3.3. Analysis

Although the search algorithm has a worst-case ex-
ponential time complexity, it performs well on experi-
ments with real-world data. Like other searches of this
type its expected real-world performance is difficult to
characterize meaningfully because m, the number of
nodes expanded, is very problem dependent. However,
m is loosely related to n, the number of inputs, and k,
the number of training examples.

The value of n certainly increases the upper bound on
m, but empirical results suggest that in practice the
value of m is not exponential in n. A least squares fit
of a trendline to the plot of m vs. n for these data sets
reveals that a single-term polynomial equation fits the
data better than an exponential equation. Figure 4
shows a plot of m vs. n for the case of finding a single
parity function, with the best-fit single-term polyno-
mial equation included. The equation for this trend-
line has an exponent of 1.9, suggesting that m ∝ n2.
Empirical results indicate that as the number of cor-
relation functions found increases, the exponent de-
creases. For example, when finding 1,000 parity func-
tions, the exponent is 0.3, indicating a sub-linear rela-
tionship.

The value of k has a somewhat non-intuitive effect
on the algorithm. Although the time required to ex-
pand a node increases with k, the number of nodes
expanded generally decreases with k. This is because
more examples allow the algorithm to distinguish be-
tween correlation functions more quickly. Therefore,
despite the fact that k factors into the time complex-
ity of the algorithm, increases in k can decrease the
run-time of the algorithm.

A Practical Generalization of Fourier-based Learning

4. Learning with Correlation Functions

The best-first search algorithm presented in Section
3 was developed to make it possible to implement
Fourier-based learning algorithms that are practical
for solving real-world problems, without sacrificing
representational power or applicability. The results
of the previous section demonstrate that it is possi-
ble to quickly find the functions that are most highly
correlated with real-world data. This section presents
results of learning real-world problems using the best-
first search for correlation functions.

4.1. Learning method

In the most straightforward application of Fourier-
based learning, the most highly correlated basis func-
tions are found, weighted by their coefficients, and
combined into a single classifier that uses the weighted
vote of basis functions to make classifications. Let M
be the set of labels of highly correlated basis functions
found in the search. Given an input x, the Fourier-
based classifier c makes classifications as follows:

c(x) =

{
+1 : if

∑
α∈M

˜̂
f(α)χα(x) ≥ 0

−1 : if
∑

α∈M
˜̂
f(α)χα(x) < 0

(7)

Although this method works well, we have found that
results can often be improved by altering the coeffi-
cients from those given by (4). In particular, we mod-
ify the coefficients using incremental gradient descent
to minimize the error of the classifier. This can be
thought of as learning an optimal set of coefficients for
the selected basis functions.

4.2. Empirical Evaluation

The learning accuracies achieved when testing on real-
world problems have been quite favorable. Table 3
presents the accuracy of the standard Fourier-based
learner (described above) on the data sets used in Sec-
tion 3. Results are compared to an implementation of
the C4.5 decision tree algorithm and to an enhanced
Fourier-based learner (described later). Each accuracy
represents the average of 30 10-fold cross validations.
The standard Fourier-based learning results were ob-
tained by finding up to 1,000 highly correlated basis
functions and using gradient descent on the coefficients
to reduce error. In several cases, limiting the standard
Fourier-based learner to fewer than 1,000 basis func-
tions improved generalization.

As can be seen in Table 3, the standard Fourier-based
learner performs fairly well. However, the decision tree
algorithm consistently performs better.

Table 3. Test accuracy of a standard Fourier-based learner
(Standard), of a Fourier-based learner enhanced with
AND and OR functions (Enhanced), and of C4.5. Accu-
racies are the average of 30 10-fold cross validations. Sta-
tistically significant improvements of the enhanced Fourier
learner over the standard Fourier learner are highlighted in
bold.

Data set Standard Enhanced C4.5

Chess 85.9 81.0 99.4
German 71.5 71.5 73.4
Heart 79.9 84.4 81.5
Pima 73.6 76.1 74.5
SPECT 79.4 84.0 80.9
Voting 96.3 96.3 96.6
Wisc 1 94.6 95.1 94.6
Wisc 2 71.0 74.9 75.8
Wisc 3 91.5 93.6 94.4

Inspired by recent work suggesting that AND and OR
functions may generally be more useful than XOR
functions for solving typical real-world learning prob-
lems (Drake & Ventura, 2005), the standard Fourier
approach was extended to use AND and OR func-
tions in addition to XOR functions. For many of
the data sets, this resulted in a significant improve-
ment in accuracy. These results are shown in Table 3
under the label Enhanced. Those accuracies shown
in bold indicate statistically significant improvements
of the enhanced Fourier-based learner over the stan-
dard Fourier-based learner. (Statistical significance
was measured with a random permutation test. In
each of the statistically significant cases, 100,000 ran-
dom permutations were tested, none of which yielded
a larger difference in accuracy than the observed dif-
ference.)

Note that the enhanced Fourier-based learner performs
much worse on the Chess data set than C4.5, and even
performs worse than the standard learner. Additional
experiments suggest that this may be a result of the
correlation functions being too highly correlated with
each other. Future work will include exploring ways of
overcoming this difficulty.

4.3. Analysis

In addition to providing good accuracies on several
data sets, this learning approach has several useful
properties. For example, it is capable of learning com-
plex functions while remaining relatively comprehen-
sible. Contrast the correlation functions returned by
this search algorithm (ex., the AND of inputs 3 and 4,
the XOR of inputs 5, 8, and 9, etc.) with the complex

A Practical Generalization of Fourier-based Learning

high-order features learned in the hidden layers of a
neural network, for example.

Another useful property of the algorithm is its ability
to find several types of correlations. Some learning al-
gorithms learn a particular type of correlation well, but
struggle to learn others. For example, an algorithm
may learn conjunctions of attributes quite well, but
struggle to learn XOR relationships. The algorithm
presented here is capable of finding and using AND,
OR, and XOR correlations. In addition, if deemed
useful, other types of correlations could be added to
the search.

As a final note, an additional approach to Fourier-
based learning that has been considered is a boost-
ing approach in which basis functions are treated as
weak hypotheses combined to form a strong hypoth-
esis. Such an approach was introduced by Jackson
(1997). We have applied the AdaBoost algorithm
of Freund and Schapire (1996) to our Fourier-based
learner, but with mixed results. The boosting algo-
rithm successfully reduced the number of basis func-
tions needed to correctly classify the training data, and
accuracy on the Chess data set was improved to 95%.
For many of the data sets, however, the boosted clas-
sifier did not generalize as well. Finding a solution to
this problem will be an area of future research.

5. Additional Applications

Although the algorithm for finding correlation func-
tions is interesting as the foundation of a learning al-
gorithm, it may be beneficial in other areas as well.
One such area is data analysis. By exploring a large
space of useful correlations, interesting properties of
the data can be efficiently determined. For example,
running the algorithm to find correlation functions for
the SPECT data set reveals an OR function with a
strong correlation to the output (much stronger than
any AND or XOR correlations). This particular cor-
relation function computes the logical OR of eight in-
puts. Such a high-order correlation would be nearly
impossible for humans to observe, but the search algo-
rithm finds it in seconds.

The search algorithm also has potential benefits as an
automatic feature selector. The search for correlation
functions can be thought of as a search for features
that are relevant to the learning task. These features
can be used as inputs to any existing learning algo-
rithm. This technique may be especially useful to
learning algorithms that don’t easily learn high-order
features. Consider again the example of the high-order
OR correlation found in the SPECT data set. We eas-

ily achieved a 2% increase in the absolute accuracy
of a simple perceptron by adding the high-order OR
function as an additional feature.

6. Conclusion

The best-first search algorithm for finding functions
that are highly correlated with an arbitrary set of data
has been shown to be highly effective in practice. It al-
lows Fourier-based learning algorithms to be efficiently
applied to real-world problems without limiting the
search for large coefficients or requiring a membership
oracle. The search algorithm can also be used to find
other types of highly correlated functions, greatly in-
creasing its usefulness.

Areas for future work include extending the tech-
niques presented here to non-Boolean functions, ex-
ploring the benefits of adding other types of functions
to the search, determining better ways to find/combine
functions for learning (including improving the mixed
results of the boosting approach), and investigating
methods for automating the process of determining
which types of correlation functions to search for.

References

Blake, C., & Merz, C. (1998). UCI repository of ma-
chine learning databases.

Drake, A., & Ventura, D. (2005). Comparing high-
order boolean features. Proceedings of the 8th Joint
Conference on Information Sciences, to appear.

Freund, Y., & Schapire, R. (1996). Experiments with
a new boosting algorithm. Proceedings of the 13th
International Conference on Machine Learning, 55,
148–156.

Jackson, J. (1997). An efficient membership-query al-
gorithm for learning dnf with respect to the uniform
distribution. Journal of Computer and System Sci-
ences, 55, 414–440.

Kushilevitz, E., & Mansour, Y. (1993). Learning deci-
sion trees using the fourier spectrum. SIAM Journal
on Computing, 22, 1331–1348.

Linial, N., Mansour, Y., & Nisan, N. (1993). Constant
depth circuits, fourier transform, and learnability.
Journal of the ACM, 40, 607–620.

Mansour, Y., & Sahar, S. (2000). Implementation is-
sues in the fourier transform algorithm. Machine
Learning, 14, 5–33.

