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Abstract

Linear discriminant analysis (LDA) has been
an active topic of research during the last
century. However, the existing algorithms
have several limitations when applied to vi-
sual data. LDA is only optimal for Gaussian
distributed classes with equal covariance ma-
trices, and only classes-1 features can be ex-
tracted. On the other hand, LDA does not
scale well to high dimensional data (over-
fitting), and it cannot handle optimally mul-
timodal distributions. In this paper, we in-
troduce Multimodal Oriented Discriminant
Analysis (MODA), a LDA extension which
can overcome these drawbacks. A new for-
mulation and several novelties are proposed:

• An optimal dimensionality reduction for
multimodal Gaussian classes with dif-
ferent covariances is derived. The new
criteria allows for extracting more than
classes-1 features.

• A covariance approximation is intro-
duced to improve generalization and
avoid over-fitting when dealing with high
dimensional data.

• A linear time iterative majorization
method is suggested in order to find a
local optimum.

Several synthetic and real experiments on
face recognition show that MODA outperform
existing linear techniques.

1. Introduction

Canonical Correlation Analysis (CCA), Independent
Component Analysis (ICA), Linear Discriminant
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Figure 1. Projection onto a low dimensional space of face
images for classification. Observe that the face distribu-
tions can be multimodal and with different covariances.

Analysis (LDA), and Principal Component Analysis
(PCA) are some examples of subspace methods (SM)
useful for classification, dimensionality reduction and
data modeling. These methods have been actively re-
searched by the statistics, neural networks, machine
learning and vision communities during the last cen-
tury. The modeling power of SM can be especially use-
ful when available data increases in features/samples,
since there is a need for dimensionality reduction while
preserving relevant attributes of the data. Another
benefit of many subspace methods is that they can be
computed as an eigenvalue or singular value type of
problem, for which there are efficient numerical pack-
ages. An obvious drawback of SM is its linear as-
sumptions; however, recently extensions based on ker-
nel methods and latent variable models can overcome
some of these limitations.

Among several classification methods (e.g. Support
Vector Machines, decision trees), LDA remains a pow-
erful preliminary tool for dimensionality reduction pre-
serving discriminative features and avoiding the ”curse
of dimensionality”. However, there exist several lim-
inations of current LDA techniques (Fukunaga, 1990;
Hastie et al., 2001). LDA is optimal only in the case
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that all the classes are Gaussian distributed with equal
covariances. Due to this assumption, the maximum
number of features that can be extracted is the num-
ber of classes-1. Another common problem when deal-
ing with high dimensional data is the small size prob-
lem (Yu & Yang, 2001), that is, the training set has
more ”dimensions” (pixels) than data samples 1. In
this situation LDA overfits and PCA techniques usu-
ally outperform LDA (Martinez & Kak, 2003). On the
other hand, the computational/storage requirements
of computing LDA directly from covariance matrices
is impractical. In this paper we introduce Multimodal
Oriented Discriminant Analysis (MODA), a new low
dimensional discriminatory technique optimal for mul-
timodal Gaussian classes with different covariances.
MODA is able to efficiently deal with the small sam-
ple case and scales well to very high dimensional data
avoiding overfitting effects. There is no closed form so-
lution for the optimal values of MODA and an iterative
majorization is proposed to seach for a local optimum.
Finally, a new view and formulation of the LDA is
introduced, which gives some new insights. Figure 1
illustrates the main purpose of this paper.

2. Linear Discriminant Analysis

The aim of LDA is to project the data into a lower
dimensional space, so that the classes are as compact
and as far as possible from each other. Many closed
form solutions for LDA are based on the following co-
variance matrices:

St =
n∑

j=1

(dj − m)(dj − m)T = DP1DT

Sw =
c∑

i=1

∑
dj∈Ci

(dj − mi)(dj − mi)T = DP2DT

Sb =
c∑

i=1

ni(mi − m)(mi − m)T = DP3DT

D ∈ �d×n (see notation2) is the data matrix, where
each column is a vectorized data sample. d denotes
the number of features, n number of samples and c

1In this case the true dimensionality of the data is the
number of samples, not the number of pixels.

2Bold capital letters denote a matrix D, bold lower-case
letters a column vector d. dj represents the j column of
the matrix D. All non-bold letters will represent variables
of scalar nature. diag is an operator which transforms a
vector to a diagonal matrix. 1k ∈ �k×1 is a vector of ones.
Ik ∈ �k×k is the identity matrix. tr(A) =

�
i aii is the

trace of the matrix A and |A| denotes the determinant.
||A||F = tr(AT A) = tr(AAT ) designates the Frobenious
norm of a matrix. Nd(x; µ,Σ) indicates a d-dimensional
Gaussian on the variable x with mean µ and covariance Σ.

the number of classes. m = 1
nD1n is the mean vector

for all the classes and mi is the mean vector for the
class i. ni is the number of samples for class i and∑c

i=1 ni = n. Pi are projection matrices (i.e PT
i = Pi

and P2
i = Pi) with the following expressions:

P1 = I − 1
n1n1T

n P2 = I − G(GT G)−1GT

P3 = G(GT G)−1GT − 1
n1n1cGT (1)

G ∈ �n×c is an dummy indicator matrix such that∑
j gij = 1, gij ∈ {0, 1} and gij is 1 if di belongs to

class Cj .

Sb is the between-covariance matrix and represents
the average of the distances between the mean of the
classes. Sw represents the within-covariance matrix
and it is a measure of the average compactness of each
class. Finally St is the total covariance matrix. With
the matrix expressions, it is straightforward to show
that St = Sw + Sb. The upper bounds on the ranks
of the matrices are c − 1, n − c, n − 1 for Sb,Sw,St

respectively.

Rayleigh like quotients are among the most
popular LDA optimization criteria (Fuku-
naga, 1990). Some are: J1(B) = |BT S1B|

|BT S2B| ,

J2(B) = tr((BT S1B)−1BT S2B), J3(B) = tr(BT S1B)
tr(BT S2B)

,
where S1 = {Sb,Sb,St} and S2 = {Sw,St,Sw}.
A closed form solution to previous minimization
problems is given by a generalized eigenvalue problem
S1B = S2BΛ. The generalized eigenvalue problem
can be solved as a joint diagonalization, that is,
finding a common basis B, which diagonalizes simul-
taneously both matrices S1 and S2 (i.e. BT S2B = I
and BT S1B = Λ).

3. Oriented Discriminant Analysis

LDA is the optimal linear projection only in the case
of having Gaussian classes with equal covariance ma-
trix (Campbell, 1984; Duda et al., 2001; Hastie et al.,
2001) (assuming enough training data). Fig. 2 shows
a situation where two classes have almost orthogonal
principal directions of the covariances and close means.
In this pathological case, LDA chooses the worst possi-
ble discriminative direction where the classes are over-
lapped (it is also very numerically unstable), whereas
ODA finds a better projection. In general, this situ-
ation becomes dangerous when the number of classes
increases.

In order to solve this problem, several authors have
proposed extensions and new views of LDA. Campbell
(Campbell, 1984) derives a maximum likelihood ap-
proach to discriminant analysis. Assuming that all
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the classes have equal covariance matrix, Campbell
shows that LDA is equivalent to impose that the class
means lie in a l-dimensional subspace. Following this
approach, Kumar and Andreou (Kumar & Andreou,
1998) proposed heteroscedastic discriminant analysis,
where they incorporate the estimation of the means
and covariances in the low dimensional space. On the
other hand, Saon et al. (Saon et al., 2000) define a
new energy function to model the directionality of the
data, J(B) =

∏c
i=1(

|BT SbB|
|BT ΣiB| )

ni , where Σi is the class
covariance matrix and Sb the between-class scatter co-
variance matrix.

Taking a different view point, Hastie et. al have pro-
posed several LDA extensions by modifying the fol-
lowing regression problem (Hastie et al., 2001; Hastie
et al., 1995):

E(B,V) = ||VGT − BT D||F (2)

where V ∈ �k×c is a scoring matrix (Hastie et al.,
1995). Similarly, Gallinari et. al (Gallinari et al.,
1991) have also shown the connection between LDA
and regression by minimizing E2(B,V) = ||GT −
VT BT D||F . These approaches are appealing for sev-
eral reasons. First, if the dummy matrix G contains 0
and 1’s, the mapping gives a linear approximation of
Bayes’s posterior probability and if gij = ni/n then it
returns classical LDA. On the other hand, Hastie et.
al (Hastie et al., 2001; Hastie et al., 1995) have modi-
fied eq. 2 to take into account more than linear func-
tions, for instance, they replace BT D by Bf(D), where
f maps the original data (similar to kernel methods)
introducing Flexible Discriminant Analysis (FDA) or
Penalized Discriminant Analysis (PDA) by adding reg-
ularization terms to eq. 2 (e.g. f2(B)). Although sim-
ilar in spirit, our work differs in several aspects; first
we provide a new and probabilistic interpretation, we
model directly the covariances in the original space
rather than mapping the data to a higher dimensional
space where usually the parameters and a functional
form of the kernels need to be chosen, our method
scales naturally with very high dimensional data and
linear algorithms are developed to learn this model.
We also show that ODA and MODA are consistent
generalizations of LDA, whereas regression approaches
have some limitations (Hastie et al., 2001; Gallinari
et al., 1991) when the number of classes increases.

3.1. Maximizing Kullback-Leibler divergence.

In this section, we derive the optimal linear dimension-
ality reduction for Gaussian distributed classes with
different covariances. A simple measure of distance
between two Gaussian distributions N(x;µi,Σi) and

Figure 2. Projection onto LDA and ODA.

N(x;µj ,Σj) is given by the Kullback-Leibler (KL) di-
vergence (Fukunaga, 1990):

KLij =
∫

dx
(
N(x;µi,Σi) − N(x;µj ,Σj)

)
log N(x;µi,Σi)

N(x;µj ,Σj)
= tr(Σ−1

i Σj + Σ−1
j Σi − 2I)

+(µi − µj)T (Σ−1
j + Σ−1

i )(µi − µj) (3)

We assume that each class i is modeled as a gaussian
N(µi,Σi) and the aim of ODA is to find a linear
transformation B ∈ �d×k, common to all the classes
(i.e. N(BT µi,BΣiBT ) ∀i ) such that it maximizes the
separability (Kullback-Leibler divergence) between the
classes in the low dimensional space, that is:

E3(B) =
∑c

i=1

∑c
j=1 KLij ∝∑c

i=1

∑c
j=1 tr

(
(BT ΣiB)−1(BT ΣjB)

+(BT ΣjB)−1(BT ΣiB)
)

+ (µi − µj)T (4)

B
(
(BT ΣjB)−1 + (BT ΣiB)−1

)
BT (µi − µj)

After some algebraic arrangements (de la Torre &
Kanade, 2005), the previous equation can be expressed
in a more compact and enlightening manner:

G(B) = −∑c
i=1 tr

(
(BT ΣiB)−1(BT AiB)

)
(5)

Ai =
∑c

j �=i

(
(µi − µj)(µi − µj)T + Σj

)

Observe that a negative sign is introduced for conve-
nience; rather than searching for a maximum, a mini-
mum of G(B) will be found.

Several interesting things are worth pointing out from
eq. 5. If all covariances are the same (i.e. Σi = Σ ∀i),
eq. 5 results in tr

(
(BT ΣB)−1(BT

∑c
i=1

∑c
j �=i(µi −
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µj)(µi − µj)T B)
)

+ c(c − 1)l, which is exactly what
LDA maximizes. ODA takes into account not just the
distance between the means but also the orientation
and magnitude of the covariance. In the LDA case, the
number of extracted features cannot exceed the num-
ber of classes because the rank of Sb is c− 1; however,
ODA does not have this constraint and more features
can be obtained. Unfortunately, due to different nor-
malization factors (BT ΣiB)−1, eq. 5 does not have a
closed-form solution in terms of an eigenequation (not
an eigenvalue problem).

4. Multimodal Oriented Discriminant
Analsyis

In the previous section, it has been shown that ODA
is the optimal linear transform for class separability
in the case of Gaussian distributions with arbitrary
covariances (full rank). However, in many situations
the class distributions are not Gaussian. For instance,
it is likely that the manifold of the facial appearance of
a person under different illumination, expression, and
poses is highly non-Gaussian. In this section, MODA,
an extension of ODA that is able to model multimodal
classes is described.

In order to model multimodal distributions, the train-
ing data for each class is first clustered using recent ad-
vances in multi-way normalized cuts (Yu & Shi, 2003).
Once the input space has been clustered for each class,
eq. 5 is modified to maximize the distances between
the clusters of different classes, that is:

E4(B) = −∑
i

∑
j �=i

∑
r1∈Ci

∑
r2∈Cj

KLr1r2
ij =

−∑
i

∑
j �=i

∑
r1∈Ci

∑
r2∈Cj

tr

(
(BT Σr1

i B)−1

BT
(
(µr1

i − µr2
j )(µr1

i − µr2
j )T + Σr2

j

)
B

)
(6)

= −∑
i

∑
r1∈Ci

tr
(
(BT Σr1

i B)−1(BT AiB)
)

Ai =
∑

j �=i

∑
r2∈Cj

(µr1
i − µr2

j )(µr1
i − µr2

j )T + Σr2
j

where µr1
i is the r1 cluster of class i, and r1 ∈ Ci sums

over all the clusters belonging to class i. KLr1r2
ij de-

notes the Kullback-Leibler divergence between the r1

cluster of class i and the r2 cluster of class j. Observe
that MODA looks for a projection matrix B which
maximizes the KL divergence between clusters among
all the classes, but it does not maximize the distance
between the clusters of the same class.

As in the case of ODA, there is no closed expression for
the maximum of eq. 6. However, if all the covariances
are the same (i.e. Σr1

i = Σ ∀ i, r1), there exists a
closed form solution that can give a new insight into
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Figure 4. a) LDA b) MODA

the method (see (de la Torre & Kanade, 2005) for more
detail information).

Figure (3) shows four 3-dimensional Gaussians belong-
ing to two classes (XOR problem). Each Gaussian has
30 samples generated with the same covariance. The
means of the two classes is close to zero. Since the dis-
tribution for each class is multimodal and both classes
have approximately the same mean, LDA cannot sepa-
rate the classes well (fig. 4.a). Figure (4.b) shows how
MODA is able to separate both classes. The figures
show the projection into one dimension; the y-axis is
the value of the projection and the x-axis is the sample
number.

Hastie et. al (Hastie et al., 2001; Hastie et al.,
1995) have introduced Mixture Discriminant Analy-
sis (MDA) to overcome similar situations, however
MODA differs in several aspects. First, it uses spec-
tral graph methods to cluster the data because they
accomodate better high dimensional data and are less
prune to local minima in comparison with k-means
type of algorithms. Secondly, it is not clear how MDA
is able to model Gaussian distributions with differ-
ent high dimensional covariances. Finally, MDA im-
plicitely constraints the clusters of the same class to
be far from each other, however MODA does not have
this constraint (e.g 4.b).
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5. Bound optimization

Eq. 6 is hard to optimize; second-order type of gradi-
ent methods (e.g. Newton or conjugate gradient) do
not scale well with huge matrices (e.g. B ∈ �d×l).
Moreover, the second derivative of eq. 6 is quite com-
plex. In this section, we use a bound optimization
method called iterative majorization (Heiser, 1997;
Leeuw, 1994; Kiers, 1995) able to monotonically re-
duce the value of the energy function. Although this
type of optimization technique is not common in the
vision/learning community, it is very similar to Expec-
tation Maximization (EM) type of algorithms.

5.1. Iterative Majorization

Iterative majorization is a monotonically convergent
method developed in the area of statistics (Heiser,
1997; Leeuw, 1994; Kiers, 1995), and it is able to solve
relatively complicated problems in a straightforward
manner. The main idea is to find a function, that
makes it easier to minimize/maximize than the orig-
inal (e.g. quadratic function) at each iteration. The
first thing to do in order to minimize G(B), eq. 6, is to
find a function L(B), which majorizes G(B), that is,
L(B) ≥ G(B) and L(B0) = G(B0), where B0 is the
current estimate. The function L(B) should be eas-
ier to minimize than G(B). A minimum of L(B), B1,
is guaranteed to decrease the energy of G(B). This
is easy to show, since L(B0) = G(B0) ≥ L(B1) ≥
G(B1). This is called the ”sandwich” inequality by De
Leeuw (Leeuw, 1994). Each update of the majoriza-
tion will improve the value of the function, and if the
function is bounded it will monotonically decrease the
value of L(B). Under these conditions it is always
guaranteed to stop at a local optimum.

Iterative majorization is very similar to EM (Neal &
Hinton, 1998) type of algorithms, which have been ex-
tensively used by the machine learning and computer
vision communities. The EM algorithm is an itera-
tive algorithm used to find a local maximum of the
log likelihood, log p(D|θ), where D is the data, θ are
the parameters. Rather than maximizing the log like-
lihood directly, EM uses Jensen’s inequality to find
a lower bound log p(D|θ) = log

∫
q(h)p(D,h|θ)

q(h)
dh ≥∫

q(h)log p(D,h|θ)

q(h)
dh, which holds for any distribution

q(h). The Expectation step, performs a functional
approximation on this lower bound, that is, it finds
the distribution q(h), which maximizes the data and
touches the log likelihood at the current parameter es-
timates θn. In fact, the optimal q(h) is the posterior
probability of the latent/hidden parameters given the
data (i.e. p(h|D) ). The Maximization step maxi-

mizes the lower-bound w.r.t the parameters θ. The
E-step in EM would be equivalent to the construction
of the majorization function and the M -step just min-
imizes/maximizes this upper/lower bound.

5.2. Constructing a majorization function

In order to find a function which ma-
jorizes G(B), the following inequality is

used (Kiers, 1995), ||(BT ΣiB)−
1
2 BT A

1
2
i −

(BT ΣiB)
1
2 (BT

nΣiBn)BT
nA

1
2
i ||F ≥ 0, where we

have assumed that the factorizations of Ai and Bi

are possible, that is, Ai = A
1
2
i A

1
2
i and Σi = Σ

1
2
i Σ

1
2
i .

Rearranging the previous equation derives in ( apply
||A||F = tr(AT A)):

tr((BT ΣiB)−1(BT AiB)) ≥ 2tr((BT
nΣiBn)−1)(BT

nAiB))
−tr

(
(BT ΣiB)−1(BT

nΣiBn)−1(BT
nAiBn)(BT

nΣiBn)−1
)

(7)

By adding a sum to both sides of this inequality a
function L(B) which majorizes G(B) is obtained:

G(B) = −∑
i tr((BT ΣiB)−1(BT AiB)) ≤ L(B) =

−∑
i 2tr((BT

nΣiBn)−1)(BT
nAiB)) + (8)

tr
(
(BT ΣiB)−1(BT

nΣiBn)−1(BT
nAiBn)(BT

nΣiBn)−1
)

Effectively, it can easily shown that L(B) majorizes
G(B) since G(Bn) = L(Bn) and L(B) ≥ G(B).

The function L(B) is quadratic in B and hence eas-
ier to minimize. After rearranging terms a necessary
condition for the minimum of L(B) has to satisfy:

∂L
∂B =

∑
i −Ti + ΣiBFi = 0

Fi = (BT
nΣiBn)−1(BT

nAiBn)(BT
nΣiBn)−1

Ti = AT
i BT

n (BT
nΣiBn)−1 (9)

See (J. R. Magnus, 1999) for matrix derivatives. Find-
ing the solution of eq. 9 involves solving the following
system of linear equations

∑
i Ti =

∑
i ΣiBFi. A

closed-form solution could be achieved by vectorizing
eq. 9 with Kronecker products. However, the system
would have dimensions of (d× l)× (d× l), which is not
efficient in either space or time. Instead, a gradient
descent algorithm which minimizes:

E5(B) = minB||
∑

i

(Ti − ΣiBFi)||F (10)

is used. Due to the huge number of the equations to
solve (d × l), an effective and linear time algorithm
to solve for the optimum of eq. 10 is a normalized
gradient descent:

Bn+1 = Bn − η ∂E(B)
∂B Rk = ∂E5(B)

∂B (11)
Rk = −∑

i ΣiBFT
i +

∑
i

∑
k ΣT

i ΣkBFiFT
k
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η is the step size needed to converge and it
is estimated by minimizing η = minη||

∑
i Ti −∑

i Σi(B + ηRk)Fi)||. After some derivation,
it can be shown that the optimal η is η =
�

i

�
k tr(ΣiRkTiT

T
k BT Σk)−�i

(
ΣiRkTiB

T
)

�
i

�
k tr(ΣiRiTiTT

k RT
k Σk)

(de la Torre
& Kanade, 2005).

6. Dealing with high dimensional data

When applying any classifier to visual data, a major
problem is the high dimensionality of the images. Sev-
eral strategies are necessary to get good generalization,
such as feature selection or dimensionality reduction
techniques (PCA, LDA, etc). In this context LDA or
MODA can be a good initial step to extract discrimina-
tive features. However, as it is well known, dimension-
ality reduction techniques such as LDA, that preserve
discriminative power cannot handle very well the case
that n << d (more pixels than training data), which is
the typical. For instance, an image of 100× 100 pixels
will correspond to feature vectors of 10000 dimensions,
which will induce covariance matrices of 10000×10000.
To make the covariance full rank, at least 10000 inde-
pendent samples would be necessary, and even that
will be a poor estimate. In this scenario, working with
huge covariance matrices presents two major prob-
lems: computational tractability (storage, efficiency
and rank decificiency) and generalization.

To solve the computational aspect, one straightfor-
ward approach is to realize that if d >> n, the true
dimensionality of D ∈ �d×n is n. Therefore, we can
project into the first n principal components without
losing any discriminative power. Besides the compu-
tational aspects, the second and more important prob-
lem is the lack of generalization when too few samples
are available. As noticed by Hugues (Hughes, 1968),
the fact of increasing the dimensionality would have
to enhance performance for recognition (more infor-
mation is added), but due to the lack of training data
this will rarely occur. Fukunaga (Fukunaga & Hayes,
1989) studied the effects of finite data set in linear and
quadratic classifiers, and concluded that the number
of samples should be proportional to the dimension for
linear classifiers and square for quadratic classifiers. In
this case, LDA over-fits the data and does not gener-
alize well to new samples. One way to understand
over-fitting is to consider eq. 2. There are O(k × n)
equations and O(d × k) unknowns (B) 3. Without
enough training data, eq. 2 is an underdetermined
system of equations with ∞ solutions. In other words,
if there are more features than training samples, di-

3Orthogonality of B is not assumed.

rectly minimizing LDA will result in a dimensionality
reduction that will act as a associative memory rather
than learning anything (no regression is done), and no
good generalization will be achieved.

In order to be able to generalize better than LDA and
not suffer from storage/computational requirements,
our solution approximates the covariance matrices as
the sum of outer products plus a scaled identity ma-
trix Σi ≈ UiΛiUT

i + σ2
i Id. Ui ∈ �d×l, Λi ∈ �l×l is a

diagonal matrix. The parameters σ2
i , Ui, Λi are es-

timated following a fitting approach which minimizes
Ec(Ui,Λi, σ

2
i ) = ||Σi−UiΛiUT

i −σ2
i Id||F . After opit-

mizing parameters, it can be shown (de la Torre &
Kanade, 2005) that: σ2

i = tr(Σi − UiΛ̂iUT
i )/d − l,

Λi = Λ̂i−σ2
i Id, where Λ̂i are the eigenvalues of the co-

variance matrix Σi and Ui the eigenvectors. The same
expression could be derived using probabilistic PCA
(Moghaddam & Pentland, 1997; Tipping & Bishop,
1999).

It is worthwhile to point out two important aspects
of the previous factorizations. Factorizing the covari-
ance as the sum of outer products and a diagonal ma-
trix is an efficient (in space and time) manner to deal
with the small sample case. Observe that to compute
ΣiB = UiΛi(UT

i B)+σ2
i B storing/computing the full

d × d covariance is not required. On the other hand,
the original covariance has d(d+1)/2 free parameters,
and after the factorization the number of parameters
is reduced to l(2d − l + 1)/2 (assuming orthogonal-
ity of Ui), so that much less data is needed to esti-
mate these parameters and hence it is not so prone to
over-fitting. Also, the spectral properties of the ma-
trix are not altered; the eigenvectors of UiΛiUT

i +σ2
i Id

are the same as Σi, and the set of eigenvalues will be
ζ1 = σ2

i + λ1, ζ2 = σ2
i + λ2, ζ(l+1) = σ2

i , · · · , ζd = σ2
i ,

where λi are the eigenvalues of the sample covariance.

7. Experiments

7.1. Toy Problem

In order to verify that under ideal conditions ODA
outperforms LDA, we tested ODA on a toy problem.
200 samples for five 20-dimensional (d=20) Gaussian
classes were generated. Each sample for class c was
generated as yi = Bcc + µc + n, where yi ∈ �20×1,
Bc ∈ �20×7, c ∼ N7(0, I) and n ∼ N20(0, 2I).
The means of each class are µ1 = 4120 , µ2 =
020 ,µ3 = −4[010 110]T , µ4 = 4[110 010]T and µ5 =
4[15 05 15 05]T . The basis Bc are random ma-
trices, where each element has been generated from
N(0, 5). A weak orthogonality between the covari-
ance matrices (i.e. tr(BT

i Bj) = 0 ∀i 
= j) is im-
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posed with a Gram-Schmidt approach, i.e. Bj = Bj −∑j−1
i=1 tr((BiBi)−1BT

j Bi)Bi ∀j = 2 · · · 5. The covari-
ance matrices are approximated as Σi = UiΛiUT

i +
σ2

i I, such that they preserve 90% of the energy.

In the test set, a linear classifier is used, that is, a new
sample di is projected into the subspace by xi = BT di

and it is assigned to the class that has smallest dis-
tance, (xi − µ̂i)Σ̂i

−1
(xi − µ̂i) + log|Σ̂i|, where µ̂i and

Σ̂i are the low-dimensional estimates of the mean and
class covariance. Table 1 shows the average recogni-
tion rate of LDA and ODA over 50 trials. For each
trial and each basis, the algorithm is run five times
from different initial conditions (perturbing the LDA
solution), and the best solution is chosen. As can ob-
served from table 1, ODA always outperforms LDA
and it is able to extract more features.

Basis 1 2 3 4 5 6
LDA 0.46 0.69 0.74 0.78 NA NA
ODA 0.46 0.77 0.85 0.90 0.94 0.97

Table 1. Average over 50 trials

It is well known, that in the case of having a small num-
ber of samples, classical PCA can outperform LDA
(Martinez & Kak, 2003). We run the same experiment
as before but with a feature size of 152 (i.e. d=152)
and just 40 samples per class. The results can be seen
in table 2.

Basis 1 2 3 4 5 6
PCA 0.20 0.42 0.53 0.66 0.75 0.82
LDA 0.20 0.37 0.57 0.78 NA NA
ODA 0.20 0.67 0.81 0.90 0.95 0.97

PCLDA 0.20 0.50 0.79 0.85 NA NA
PCODA 0.20 0.70 0.84 0.91 0.95 0.97

Table 2. Average over 50 trials

PCLDA holds for PCA+LDA (preserving 95% of the
energy) and PCMODA for PCA+ODA. Even, in the
small sample case, ODA still outperforms all the other
methods. Also, by projecting onto PCA, LDA avoids
overfitting.

7.2. Face Recognition from Video

Face recognition is one of the classical pattern recogni-
tion problems that suffers from noise, limited number
of training data and the face under pose/illumination
changes describes non-linear manifolds. These facts
make face recognition a good candidate for MODA.

A face database has been collected using our
omnidirectional-meeting-capturing device (de la Torre

Figure 5. Some training samples for 10 classes.

et al., 2005). The database consist on 23 people
recorded over two different days under different illu-
mintation conditions. Figure 5 shows images of some
people in the database, variations are due to facial
expression, pose, scale and illumination conditions.
The training set consists of the data gathered on the
first day under three different illumination conditions
(varying lights in the recording room), scale and ex-
pression changes. We have around 500 images per per-
son in the training set and a similar number for the
testing.The testing data consist of the recordings of
the second day (a couple of weeks later) under similar
conditions. Figure 6 illustrates the recognition perfor-
mance using PCA, LDA and MODA, similarly table
3 provides some detailed numerical values for different
number of basis.

In this experiment, each class has been clustered into
two clusters to estimate B. Once B is calculated, the
Euclidean distance for the nearest neighbourhood is
used. Several metrics have been tested (e.g. Ma-
halanobis, Euclidean, Cosine, etc) and the Euclid-
ean distance performed the best in our experiments.
For the same number of bases, MODA outperforms
PCA/LDA. Also, observe that LDA can extract only
classes-1 features (22 features), whereas MODA can
extract many more features. In this experiment, each
sample is classified independently; however, using tem-
poral information can greatly improve the recognition
performance; Refer to (de la Torre et al., 2005) for
more details.

Basis 2 5 10 20 30 50
PCA 0.12 0.26 0.43 0.55 0.58 0.59
LDA 0.21 0.36 0.48 0.56 NA NA

MODA 0.23 0.38 0.50 0.59 0.61 0.63
Table 3. Recognition performance of PCA/LDA/MODA
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