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Abstract
Mappings to structured output spaces
(strings, trees, partitions, etc.) are typi-

cally learned using extensions of classifica-
tion algorithms to simple graphical struc-
tures (eg., linear chains) in which search and
parameter estimation can be performed ex-
actly. Unfortunately, in many complex prob-
lems, it is rare that exact search or parame-
ter estimation is tractable. Instead of learn-
ing exact models and searching via heuristic
means, we embrace this difficulty and treat
the structured output problem in terms of
approximate search. We present a frame-
work for learning as search optimization, and
two parameter updates with convergence the-
orems and bounds. Empirical evidence shows
that our integrated approach to learning and
decoding can outperform exact models at
smaller computational cost.

1. Introduction

Many general techniques for learning and decoding
with structured outputs are computationally demand-
ing, are ill-suited for dealing with large data sets,
and employ parameter optimization for an intractable
search (decoding) problem. In some instances, such as
syntactic parsing, efficient task-specific decoding algo-
rithms have been developed, but, unfortunately, these
are rarely applicable outside of one specific task.

Rather than separating the learning problem from the
decoding problem, we propose to consider these two
aspects in an integrated manner. By doing so, we are
able to learn model parameters appropriate for the
search procedure, avoiding the need to heuristically
combine an a prior: unrelated learning technique and
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search algorithm. After phrasing the learning problem
in terms of search, we present two online parameter up-
date methods: a simple perceptron-style update and
an approximate large margin update. We apply our
model to two tasks: a simple syntactic chunking task
for which exact search is possible (to allow for com-
parison to exact learning and decoding methods) and
a joint tagging/chunking task for which exact search
is intractable.

2. Previous Work

Most previous work on the structured outputs problem
extends standard classifiers to linear chains. Among
these are maximum entropy Markov models and con-
ditional random fields (McCallum et al., 2000; Laf-
ferty et al., 2001); case-factor diagrams (McAllester
et al., 2004); sequential Gaussian process models (Al-
tun et al., 2004); support vector machines for struc-
tured outputs (Tsochantaridis et al., 2004) and max-
margin Markov models (Taskar et al., 2003); and
kernel dependency estimation models (Weston et al.,
2002). These models learn distributions or weights on
simple graphs (typically linear chains). Probabilistic
models are optimized by gradient descent on the log
likelihood, which requires computable expectations of
features across the structure. Margin-based techniques
are optimized by solving a quadratic program (QP)
whose constraints specify that the best structure must
be weighted higher than all other structures. Linear
chain assumptions can reduce the exponentially-many
constraints to a polynomial, but training remains com-
putationally expensive.

Recent effort to reduce this computational demand
considers employing constraints that the correct out-
put only outweigh the k-best model hypotheses
(Bartlett et al., 2004). Alternatively an online algo-
rithm for which only very small QPs are solved is also
possible (McDonald et al., 2004).

At the heart of all these algorithms, batch or online,
likelihood- or margin-based, is the computation:
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y = argmax f(x,y;w 1
§ = argmax f(z,y; w) (1)

This seemingly innocuous statement is necessary in
all models, and “simply” computes the structure g
from the set of all possible structures ) that maxi-
mizes some function f on an input x, parametrized by
a weight vector w. This computation is typically left
unspecified, since it is “problem specific.”

Unfortunately, this argmax computation is, in real
problems with complex graphical structure, often in-
tractable. Compounding this issue is that this best
guess ¢ is only one ingredient to the learning algo-
rithms: likelihood-based models require feature expec-
tations and the margin-based methods require either
a k-best list of best y or a marginal distribution across
the graphical structure. One alternative that allevi-
ates some of these issues is to use a perceptron al-
gorithm, where only the arg max is required (Collins,
2002), but performance can be adversely affected by
the fact that even the argmax cannot be computed
exactly; see (McCallum & Wellner, 2004) for example.

3. Search Optimization

We present the Learning as Search Optimization
(LaSO) framework for predicting structured outputs.
The idea is to delve into Eq (1) to first reduce the
requirement that an algorithm need to compute an
arg max, and also to produce generic algorithms that
can be applied to problems that are significantly more
complex that the standard sequence labeling tasks that
the majority of prior work has focused on.

3.1. Search

The generic search problem is covered in great depth
in any introductory AI book. Its importance stems
from the intractability of computing the “best” solu-
tion to many problems; instead, one must search for a
“good” solution. Most Al texts contain a definition of
the search problem and a general search algorithm; we
work here with that from Russell and Norvig (1995).
A search problem is a structure containing four fields:
STATES (the world of exploration), OPERATORS (tran-
sitions in the world), GOAL TEST (a subset of states)
and PATH COST (computes the cost of a path).

One defines a general search algorithm given a search
problem, an initial state and a “queuing function.”
The search algorithm will either fail (if it cannot find
a goal state) or will return a path. Such an algorithm
(Figure 1) operates by cycling through a queue, tak-
ing the first element off, testing it as a goal and ex-
panding it according to operators if otherwise. Each
node stores the path taken to get there and the cost of

Algo Search(problem, initial, enqueue)
nodes «— MakeQueue(MakeNode(problem,initial))
while nodes is not empty do
node «— RemoveFront(nodes)
if GoalTest(node) then return node
next < Operators(node)
nodes «— enqueue(problem, nodes, next)
end while
return failure

Figure 1. The generic search algorithm.

this path. The enqueue function places the expanded
nodes, next, onto the queue according to some vari-
able ordering that can yield depth-first, breadth-first,
greedy, beam, hill-climbing, and A* search (among
others). Since most search techniques can be described
in this framework, we will treat it as fixed.

3.2. Search Parameterization

Given the search framework described, for a given task
the search problem will be fixed, the initial state will
be fixed and the generic search algorithm will be fixed.
The only place left, therefore, for parameterization
is in the enqueue function, whose job it is to essen-
tially rank hypotheses on a queue. The goal of learn-
ing, therefore, is to produce an enqueue function that
places good hypotheses high on the queue and bad
hypotheses low on the queue. In the case of optimal
search, this means that we will find the optimal solu-
tion quickly; in the case of approximate search (with
which we are most interested), this is the difference
between finding a good solution or not.

In our model, we will assume that the enqueue func-
tion is based on two components: a path component g
and a heuristic component h, and that the score of a
node will be given by g+ h. This formulation includes
A* search when h is an admissible heuristic, heuristic
search when h is inadmissible, best-first search when
h is identically zero, and any variety of beam search
when a queue is cut off at a particular point at each
iteration. We will assume h is given and that g is a
linear function of features of the input x and the path
to and including the current node, n: g = w ' ®(z,n),
where ®(+,-) is the vector of features.

3.3. Learning the Search Parameters

The supervised learning problem in this search-based
framework is to take a search problem, a heuristic
function, and training data with the goal of produc-
ing a good weight vector w for the path function g.
As in standard structured output learning, we will as-
sume that our training data consists of N-many pairs
(ac(”)7 y(")) € X x Y that tell us for a given input (™
what is the correct structured output y(™. We will
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Algo Learn(problem, initial, enqueue, w, x, y)
nodes «— MakeQueue(MakeNode(problem,initial))
while nodes is not empty do
node < RemoveFront(nodes)
if none of nodesU {node} is y-good or
GoalTest(node) and node is not y-good then
sibs < siblings(node, y)
w «— update(w, x, sibs, node U nodes)
nodes «— MakeQueue(sibs)
else
if GoalTest(node) then return w
next «— Operators(node)
nodes «— enqueue(problem, nodes, next, w)
end if
end while

Figure 2. The generic search/learning algorithm.

make one more important monotonicity assumption:
for any given node s € S and an output y € ), we
can tell whether s can or cannot lead to y. In the case
that s can lead to y, we refer to s as “y-good.”!

The learning problem can thus be formulated as fol-
lows: we wish to find a weight vector w such that:
(1) the first goal state dequeued is y-good and (2) the
queue always contains at least one y-good state. In
this framework, we explore an online learning scenario,
where learning is tightly entwined with the search pro-
cedure. From a pragmatic perspective, this makes
sense: it is useless to the model to learn parameters for
cases that it will never actually encounter. We propose
a learning algorithm of the form shown in Figure 2. In
this algorithm, we write siblings(node, y) to denote the
set of y-good siblings of this node. This can be cal-
culated recursively by back-tracing to the first y-good
ancestor and then tracing forward through only y-good
nodes to the same search depth as n (in tasks where
there is a unique y-good search path — which is com-
mon — the sibling of a node is simply the appropriate
initial segment of this path).

There are two changes to the search algorithm to fa-
cilitate learning (comparing Figure 1 and Figure 2).
The first change is that whenever we make an error (a
non y-good goal node is dequeued or none of the queue
is y-good), we update the weight vector w. Secondly,
when an error is made, instead of continuing along this
bad search path, we instead clear the queue and insert
all the correct moves we could have made.?

We assume that the loss we optimize is monotonic on
a path in S; in this paper, we only use 0/1 loss.

2Performing parameter optimization within search re-
sembles reinforcement learning without the confounding
factor of “exploration.” Early research in reinforcement
learning focused on arbitrary input/output mappings (Far-
ley & Clark, 1954), though this was not framed as search.
Later, associative RL was introduced, where a contezt in-
put (akin to our input x) was given to a RL algorithm

Note that this algorithm cannot fail (in the sense that
it will always find a goal state). Aiming at a contra-
diction, suppose it were to fail; this would mean that
nodes would have become empty. Since “Operators”
will never return an empty set, this means that sibs
must have been empty. But since a node that is in-
serted into the queue is either itself good or has an an-
cestor that is good, so could never have become empty.
(There may be a complication with cyclic search spaces
— in this case, both algorithms need to be augmented
with some memory to avoid such loops, as is standard.)

3.4. Parameter Updates

We propose two methods for updating the model pa-
rameters. To facilitate discussion, we will refer to a
problem as linearly separable if there exists a weight
vector w with ||w||, < 1 such that the search algo-
rithm parameterized by w (a) will not fail and (b) will
return an optimal solution. Note that with this def-
inition, linear separability is a joint property of the
problem and the search algorithm: what is separable
with exact search may not be separable with a heuris-
tic search. In the case of linearly separable data, we
define the margin as the maximal v such that the data
remain separable when all y-good states are down-
weighted by ~. In other words, ~ is the minimum over
all decisions of max,p, |w ' ®(z,g) —w' ®(x,b)|, where
g is a y-good node and b is a y-bad node.

Perceptron Updates. A simple perceptron-
style update rule (Rosenblatt, 1958), given
(w, z, sibs, nodes) is w «— w + A, where:
_ ®(z,n) ®(z,n)
A= Z |sibs| Z |nodes| )

nesibs neEnodes

When an update is made, the feature vector for the
incorrect decisions are subtracted off, and the feature
vectors for all possible correct decisions are added.
Whenever |sibs| = |nodes| = 1, this looks exactly like
the standard perceptron update. When there is only
one sibling but many nodes, this resembles the gradi-

(Barto et al., 1981; Barto & Anandan, 1985). Similar ap-
proaches attempt to predict value functions for generaliza-
tion using techniques such as temporal difference (TD) or
Q-learning (Bellman et al., 1963; Boyan & Moore, 1996;
Sutton, 1996). More recently, Zhang and Dietterich (1997)
applied RL techniques to solving combinatorial scheduling
problems, but again focus on the standard TD(\) frame-
work. These frameworks, however, are not explicitly tai-
lored for supervised learning and without the aid of our
monotonicity assumption it is difficult to establish con-
vergence and generalization proofs. Despite these differ-
ences, our search optimization framework clearly lies on
the border between supervised learning and reinforcement
learning, and further investigation may reveal interesting
connections.
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ent of the log likelihood for conditional models after
approximating the “log sum exp” with Jensen’s in-
equality to turn it into a simple sum. When there
is more than one correct next hypothesis, this up-
date rule resembles that used in multi-label or ranking
variants of the perceptron (Crammer & Singer, 2003).
In that work, different “weighting” schemes are pro-
posed, including, for instance, one that weights the
nodes in the sums proportional to the loss suffered;
such schemes are also possible in our framework, but
space prohibits a discussion of them here. Based on
this update, we can prove the following theorem:

Theorem 1 For any training sequence that is sepa-
rable with by a margin of size 7y, using the perceptron
update rule the number of errors made during train-
ing is bounded above by R?/~?, where, R is a constant
such that for all training instances (x,y), for all nodes
n in the path to y and all successors m of n (good or
otherwise), ||®(x,n) — ®(xz,m)||, < R.

In the case of inseparable data, we follow Freund and
Shapire (1999) and define D,, - as the least obtainable
error with weights w and margin v over the training
data: Dy, = [, (max{0,7 — ps})?]*/2, where the
sum is over all states leading to a solution and p;y is
the empirical margin between the correct state and the
hypothesized state s. Using this notation, we obtain
two corollaries (proofs are direct adaptations of Freund
and Shapire (1999) and Collins (2002)):

Corollary 2 For any training sequence, the number
of mistakes made by the training algorithm is bounded
above by ming, (R + Day )? /72, where R is as before.

Corollary 3 For any i.i.d. training sequence of
length n and any test example (Z,y), the probabil-
ity of error on the test example is bounded above by
(2/(n + 1))E{ming (R + Dy ~)?/v*}, where the ex-
pectation is taken over all n + 1 data points.

Approximate Large Margin Updates. One ma-
jor disadvantage to the perceptron algorithm is that it
only updates the weights when errors are made. This
can lead to a brittle estimate of the parameters, in
which the “good” states are weighted only minimally
better than the “bad” states. We would like to en-
force a large margin between the good states and bad
states, but would like to do so without adding signifi-
cant computational complexity to the problem. In the
case of binary classification, Gentile (2001) has pre-
sented an online, approximate large margin algorithm
that trains similarly to a perceptron called ALMA.
The primary difference (aside from a step size on the
weight updates) is that updates are made if either (a)

the algorithm makes a mistake or (b) the algorithm is
close to making a mistake. Here, we adapt this algo-
rithm to structured outputs in our framework.

Our algorithm, like ALMA, has four parameters:
o, B,C,p. « determines the degree of approximation
required: for a = 1, the algorithm seeks the true max-
imal margin solution, for a < 1, it seeks one within «
of the maximal. B and C can be seen as tuning param-
eters, but a default setting of B = 1/a and C = /2
is reasonable (see Theorem 4 below). We measure the
instance vectors with norm p and the weight vector
with its dual value ¢ (where 1/p+1/q¢ = 1). We use
p = q = 2, but large p produces sparser solutions, since
the weight norm will approach 1. The update is:

w — p(w + Ck™/* p(A)) (3)

Here, k is the “generation” number of the weight vec-
tor (initially 1 and incremented at every update) and
p(u) is the projection of w into the Il unit sphere:
u/max{1, ||lu||,}. One final change to the algorithm
is to down-weight the score of all y-good nodes by
(1 —a)Bk~1/2. Thus, a good node will only survive if
it is good by a large margin. This setup gives rise to a
bound on the number of updates made (proof sketched
in Appendix A) and two corollaries (proofs are nearly
identical to Theorem 4 and (Gentile, 2001)):

Theorem 4 For any training sequence that is sepa-
rable with by a margin of size vy using the approxi-
mate large margin update rule with parameters o, B =
\/g/oz,C = \/5, the number of errors made during

training is bounded above by % (% — 1)2 + % —4.

Corollary 5 Suppose for a given o, B and C' are such
that C? + 2(1 — a)BC = 1; letting p = (Cvy)~2, the
number of corrections made is bounded above by:

/2
1 p2 pz 1 1

Corollary 6 For any i.i.d. training sequence of
length n and any test example (Z,y), the probabil-
ity of error on the test example is bounded above by
(2/(n + 1))E{-}, where (-) is given in Eq (4) and the
expectation is taken over all n + 1 data points.

4. Experiments

4.1. Syntactic Chunking

The syntactic chunking problem is a sequence segmen-
tation and labeling problem; for example:

[Great American]np [said]yp [it]Np [increased]yp [its
loan-loss reserves|yp [bylpp [$ 93 million]yp [after]pp
[reviewing]yp [its loan portfolio]nyp , [raising]yp [its total
loan and real estate reserves|yp [to]pp [$ 217 million]np -
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Typical approaches to this problem recast it as a se-
quence labeling task and then solve it using any of
the standard sequence labeling models; see (Sha &
Pereira, 2002) for a prototypical example using CRFs.
The reduction to sequence labeling is typically done
through the “BIO” encoding, where the beginning of
an X phrase is tagged B-X, the non-beginning (inside)
of an X phrase is tagged I-X and any word not in a
phrase is tagged O (outside). More recently, Sarawagi
and Cohen (2004) have described a straightforward ex-
tension to the CRF (called a Semi-CRF) in which the
segmentation and labeling is done directly.

We explore similar models in the context of syntactic
chunking, where entire chunks are hypothesized, and
no reduction to word-based labels is made. We use
the same set of features across all models, separated
into “base features” and “meta features.” The base
features apply to words individually, while meta fea-
tures apply to entire chunks. The base features we
use are: the chunk length, the word (original, lower
cased, stemmed, and original-stem), the case pattern
of the word, the first and last 1, 2 and 3 characters,
and the part of speech and its first character. We
additionally consider membership features for lists of
names, locations, abbreviations, stop words, etc. The
meta features we use are, for any base feature b, b
at position ¢ (for any sub-position of the chunk), b
before/after the chunk, the entire b-sequence in the
chunk, and any 2- or 3-gram tuple of bs in the chunk.
We use a first order Markov assumption (chunk label
only depends on the most recent previous label) and
all features are placed on labels, not on transitions.
In this task, the arg max computation from Eq (1) is
tractable; moreover, through a minor adaptation of
the standard HMM forward and backward algorithms,
we can compute feature expectations, which enable us
to do training in a likelihood-based fashion.

Our search space is structured so that each state is
the segmentation and labeling of an initial segment
of the input string, and an operation extends a state
by an entire labeled chunk (of any number of words).
For instance, on the example shown at the beginning
of this section, the initial hypothesis would be empty;
the first correct child would be to hypothesize a chunk
of length 2 with the tag NP. The next correct hypoth-
esis would be a chunk of length 1 with tag VP. This
process would continue until the end of the sentence
is reached. For beam search, we execute search as de-
scribed, but after every expansion we only retain the
b best hypotheses to continue on to the next round.

Our models for this problem are denoted LASOP; and
LASOAy, where b is the size of the beam we use in

search, which we vary over {1,5,25, 00}, where oo de-
notes full, exact Viterbi search and forward-backward
updates similar to those used in the semi-CRF. This
points out an important issue in our framework: if the
graphical structure of the problem is amenable to ex-
act search and exact updates, then the framework can
accommodate this. In this case, for example, when us-
ing exact search, updates are only made at the end of
decoding when the highest ranking output is incorrect
(after adjusting the weights down for LASOA), but
other than this exception, the sum over the bad nodes
in the updates is computed over the entire search lat-
tice and strongly resemble almost identical to those
used in the conditional likelihood models for the gra-
dient of the log normalization constant. We always use
averaged weights.

We report results on the CoNLL 2000 data set, which
includes 8936 training sentences (212k words) and
2012 test sentences (47k words). We compare our pro-
posed models against several baselines. The first base-
line is denoted ZDJ02 and is the best system on this
task to date (Zhang et al., 2002). The second baseline
is the likelihood-trained model, denoted SEMICRF.
We use 10% of the training data to tune model param-
eters. The third baseline is the standard structured
perceptron algorithm, denoted PERCEPTRON. For the
SEMICRF, this is the prior variance; for the online al-
gorithms, this is the number of iterations to run (for
ALMA, o = 0.9; changing « in the range [0.5,1] does
not affect the score by more than £0.1 in all cases).

The results, in terms of training time, test decoding
time, precision, recall and f-score are shown in Table 1.
As we can see, the SEMICRF is by far the most com-
putationally expensive algorithm, more than twice as
slow to train than even the LASOP, algorithm. The
PERCEPTRON has roughly comparable training time
to the exactly trained LASO algorithms (slightly faster
since it only updates for the best solution), but its per-
formance falls short. Moreover, decoding time for the
SEMICRF takes a half hour for the two thousand test
sentences, while the greedy decoding takes only 52 sec-
onds. It is interesting to note that at the larger beam
sizes, the large margin algorithm is actually faster than
the perceptron algorithm.

In terms of the quality of the output, the SEMICRF
falls short of the previous reported results (92.2 versus
94.1 f-score). Our simplest model, LASOP; already
outperforms the SEMICRF with an f-score of 92.4;
the large margin variant achieves 93.0. Increasing the
beam past 5 does not seem to help with large margin
updates, where performance only increases from 94.3
to 94.4 going from a beam of 5 to an infinite beam (at
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Table 1. Results on syntactic chunking task; columns are
training and testing time (h:m), and precision/recall/f-
score on test data.

Train | Test || Pre| Rec| F
7ZDJ02 - -1/94.3]94.0 | 94.1
SEMICRF 53:56 | :31/92.3(92.192.2
PERCEPTRON || 18:05 :221193.4193.5193.4
LASOPp; :55| :011(92.5(192.3(92.4
LASOps 1:49| :041/93.7|92.6|93.1
LASOpPo;5 6:32| :111(/94.2]94.1(94.1
LASOP& 21:43| :24(94.3|94.1|94.2
LASOA; 51 :011[93.6]92.5]93.0
LASOas 2:04| :04193.8(94.4|94.3
LASOAgs 5:59| :101/93.9(94.6 |94.4
LASOA 20:12 :251(194.094.8 |1 94.4

the cost of an extra 18 hours of training time).

4.2. Joint Tagging and Chunking

In Section 4.1, we described an approach to chunking
based on search without reduction. This assumed that
part of speech tagging had been performed as a pre-
processing step. In this section, we discuss models in
which part of speech tagging and chunking are per-
formed jointly. This task has previously been used as
a benchmark for factorized CRFs (Sutton et al., 2004).
In that work, the authors discuss many approximate
inference methods to deal with the fact that inference
in such joint models is intractable.

For this task, we do use the BIO encoding of the
chunks so that a more direct comparison to the fac-
torized CRFs would be possible. We use the same
features as the last section, together with the regular
expressions given by (Sutton et al., 2004) (so that our
feature set and their feature set are nearly identical).
We do, however, omit their final feature, which is ac-
tive whenever the part of speech at position ¢ matches
the most common part of speech assigned by Brill’s
tagger to the word at position 7 in a very large corpus
of tagged data. This feature is somewhat unrealis-
tic: the CoNLL data set is a small subset of the Penn
Treebank, but the Brill tagger is trained on all of the
Treebank. By using this feature, we are, in effect, able
to leverage the rest of the Treebank for part of speech
tagging. Using just their features without the Brill
feature, our performance is quite poor, so we added
the lists described in the previous section.

In this problem, states in our search space are again
initial taggings of sentences (both part of speech tags
and chunk tags), but the operators simply hypothe-
size the part of speech and chunk tag for the single
next word, with the obvious constraint that an I-X
tag cannot follow anything but a B-X or I-X tag.

The results are shown in Table 2. The models are

Table 2. Results on joint tagging/chunking task; columns
are time to train (h:m), tag accuracy, chunk accuracy, joint
accuracy and chunk f-score.

Train | Test || Tag | Chn | Jnt || F

SUTTON - -1198.9197.4 196.5([93.9
LASOP; 1:29| :011/98.9]95.5 [94.7]/93.1
LASOpPs 3:24| :04198.9|95.895.1]93.5
LASOP1o 4:47| :09198.9|95.9 |95.1]93.5
LASOPos 4:59| :16198.9|95.9 |195.1(93.7
LASOPs9 5:53| :301/98.9|95.8 194.993.4
LASOA; 411 :011{/99.0| 96.5 [95.8]93.9
LASOAs 1:43] :03][99.0] 96.8 [96.1| 94.2
LASOAqg 2:21| :07(/99.1|97.3 |196.4|94.4
LASOA2s 3:38] :201/99.1|97.4 |96.6 | 94.3
LASOAs 3:15 :231199.1] 974 196.6 ||94.4

compared against SUTTON, the factorized CRF with
tree reparameterization. We do not report on infinite
beams, since such a calculation is intractable. We re-
port training time®, testing time, tag accuracy, chunk
accuracy and joint accuracy and f-score for chunking.
In this table, we can see that the large margin algo-
rithms are much faster to train than the perceptron
(they require fewer iterations to converge — typically
two or three compared to seven or eight). In terms
of chunking f-score, none of the perceptron-style algo-
rithms is able to out-perform the SUTTON model, but
our LASOA algorithms easily outperform it. With a
beam of only 1, we achieve the same f-score (93.9) and
with a beam of 10 we get an f-score of 94.4. Comparing
Table 1 and Table 2, we see that, in general, we can do
a better job chunking with the large margin algorithm
when we do part of speech tagging simultaneously.

To verity Theorem 4 experimentally, we have run the
same experiments using a 1000 sentence (25k word)
subset of the training data (so that a positive margin
could be found) with a beam of 5. On this data, La-
SOA made 15932 corrections. The empirical margin
at convergence was 1.299e — 2; according to Theorem
4, the number of updates should have been < 17724,
which is borne out experimentally.

4.3. Effect of Beam Size

Clearly, from the results presented in the preceding
sections, the beam size plays an important role in the
modeling. In many problems, particularly with gen-
erative models, training is done exactly, but decoding
is done using an inexact search. In this paper, we
have suggested that learning and decoding should be
done in the same search framework, and in this sec-
tion we briefly support this suggestion with empirical

3Sutton et al. report a training time of 13.6 hours on
5% of the data (400 sentences); it is unclear from their
description how this scales. The scores reported from their
model are, however, based on training on the full data set.
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Table 3. Effect of beam size on performance; columns are
for constant decoding beam; rows are for constant training
beam. Numbers are chunk f-score on the joint task.

1 5 10 | 25 | 50
1] 939928 | 91.9 | 91.3 | 90.9
51905 | 9.3 | 9.4 | 941 | 94.1

10 | 89.6 | 94.5 | 94.4 | 942 | 94.2

25 | 88.7 | 94.2 | 94.5 | 94.5 | 943

50 | 88.4 | 94.2 | 9/.7 | 942 | 977

evidence. For our experiments, we use the joint tag-
ging/chunking model from Section 4.2 and experiment
by independently varying the beam size for training
and the beam size for decoding. We show these results
in Table 3, where the training beam size runs verti-
cally and the decoding beam size runs horizontally;
the numbers we report are the chunk f-score.

In these results, we can see that the diagonal (same
training beam size as testing beam size) is heavy, in-
dicating that training and testing with the same beam
size is useful. This difference is particularly strong
when one of the sizes is 1 (i.e., pure greedy search is
used). When training with a beam of one, decoding
with a beam of 5 drops f-score from 93.9 (which is
respectable) to 90.5 (which is poor). Similarly, when
a beam of one is used for decoding, training with a
beam of 5 drops performance from 93.9 to 92.8. The
differences are less pronounced with beams > 10, but
the trend is still evident. We believe (without proof)
that when the beam size is large enough that the loss
incurred due to search errors is at most the loss in-
curred due to modeling errors, then using a different
beam for training and testing is acceptable. However,
when some amount of the loss is due to search errors,
then a large part of the learning procedure is aimed
at learning how to awvoid search errors, not necessar-
ily modeling the data. It is in these cases that it is
important that the beam sizes match.

5. Summary and Discussion

In this paper, we have suggested that one views the
learning with structured outputs problem as a search
optimization problem and that the same search tech-
nique should be applied during both learning and de-
coding. We have presented two parameter update
schemes in the LaSO framework, one perceptron-style
and the other based on an approximate large margin
scheme, both of which can be modified to work in ker-
nel space or with alternative norms (but not both).

Our framework most closely resembles that used by
the incremental parser of Collins and Roark (2004).
There are, however, several differences between the
two methodologies. Their model builds on standard

perceptron-style updates (Collins, 2002) in which a
full pass of decoding is done before any updates are
made, and thus does not fit into the search optimiza-
tion framework we have outlined. Collins and Roark
found experimentally that stopping the parsing early
whenever the correct solution falls out of the beam
results in drastically improved performance. How-
ever, theyhad little theoretical justification for doing
so. These “early updates,” however, do strongly re-
semble our update strategy, with the difference that
when Collins and Roark make an error, they stop de-
coding the current input and move on to the next; on
the other hand, when our model makes an error, it
continues from the correct solution(s). This choice is
justified both theoretically and experimentally. On the
tasks reported in this paper, we observe the same phe-
nomenon: early updates are better than no early up-
dates, and the search optimization framework is better
than early updates. For instance, in the joint tag-
ging/chunking task from Section 4.2, using a beam of
10, we achieved an f-score of 94.4 in our framework;
using only early updates, this drops to 93.1 and using
standard perceptron updates, it drops to 92.5.

Our work also bears a resemblance to training local
classifiers and combining them together with global
inference (Punyakanok & Roth, 2001). The primary
difference is that when learning local classifiers, one
must assume to have access to all possible decisions
and must rank them according to some loss function.
Alternatively, in our model, one only needs to con-
sider alternatives that are in the queue at any given
time, which gives us direct access to those aspects of
the search problem that are easily confused. This, in
turn, resembles the online large margin algorithms pro-
posed by McDonald et al. (2004), which suffer from
the problem that the arg max must be computed ex-
actly. Finally, one can also consider our framework in
the context of game theory, where it resembles the it-
erated gradient ascent technique described by Kearns
et al. (2000) and the closely related marginal best
response framework (Zinkevich et al., 2005).

We believe that LaSO provides a powerful framework
to learn to predict structured outputs. It enables one
to build highly effective models of complex tasks ef-
ficiently, without worrying about how to normalize a
probability distribution, compute expectations, or es-
timate marginals. It necessarily suffers against proba-
bilistic models in that the output of the classifier will
not be a probability; however, in problems with ex-
ponential search spaces, normalizing a distribution is
quite impractical. In this sense, it compares favor-
ably with the energy-based models proposed by, for
example, LeCun and Huang (2005), which also avoid
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probabilistic normalization, but still require the ex-
act computation of the arg max. We have applied the
model to two comparatively trivial tasks: chunking
and joint tagging/chunking. Since LaSO is not limited
to problems with clean graphical structures, we believe
that this framework will be appropriate for many other
complex structured learning problems.
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Appendix A. Proof of Theorem 4

We follow Gentile (2001), Thm 3, modifying the bound
of the normalization factor when projecting w; sup-
pose w is the optimal separating hyperplane.  De-
noting the normalization factor N, on update k, we
find:  Ni o < lwe+mAlR < flwil® + mi o+
2mpwr A < 1+ 17 + 2(1 — a)mey (v is the mar-
gin) by observing A is bounded above by ~ since
w' [Znesibb}l)(x,n)/\sibﬂ — Zneylodesé(x,n)/|n0des|] <
w' [maxpesivs ®(x,n) — minpenoges (z,n)] < 7, due to
the definition of the margin. Ny is bounded by 1 +
(8/a — 6)/k to bound number of updates m by ym <

(4/a —2)\/4/a — 3 +m/2. Algebra completes the proof.



