
Hedged learning: Regret-minimization with learning experts

Yu-Han Chang ychang@csail.mit.edu

CSAIL, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139 USA

Leslie Pack Kaelbling lpk@csail.mit.edu

CSAIL, Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139 USA

Abstract

In non-cooperative multi-agent situations,
there cannot exist a globally optimal, yet
opponent-independent learning algorithm.
Regret-minimization over a set of strategies
optimized for potential opponent models is
proposed as a good framework for decid-
ing how to behave in such situations. Us-
ing longer playing horizons and experts that
learn as they play, the regret-minimization
framework can be extended to overcome sev-
eral shortcomings of earlier approaches to the
problem of multi-agent learning.

1. Introduction

In recent years, there has been increasing interest in
multi-agent learning. A large body of this work tries to
marry game theoretic concepts such as Nash equilib-
rium to learning in various types of games. However,
as Reinhard Selton, 1995 Economics Nobel Prize win-
ner (along with Nash and Harsanyi) once wrote in a
personal communication, “Game theory is for proving
theorems, not for playing games.”

What does this mean for AI researchers interested in
designing algorithms that learn to play good strate-
gies in multi-agent domains? There are three issues re-
lated to applying equilibrium results from game theory
directly: computational efficiency, learning dynamics,
and opponent assumptions. In some cases, straight
computation of Nash or correlated Nash equilibria in
a given game is quite useful, and there have been a
number of recent advances exploiting game structure
to compute such equilibria efficiently. Moreover, some
of these algorithms use learning dynamics to converge

Appearing in Proceedings of the 22nd International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

to correlated equilibria, thus addressing the core of
Selton’s complaint: while the classic Nash equilibrium
is a stable point, it is not necessarily the stable point
of reasonable system dynamics.

Although these advances begin to resolve the issues of
computational efficiency and learning dynamics, the
problem of opponent assumptions remains more elu-
sive. When we face an unknown opponent, we have no
guarantee that the opponent will be playing strategi-
cally (as in classical Nash results), following any par-
ticular learning rule (as in the more recent work on
correlated equilibria), or even playing vaguely intelli-
gently. Perhaps the opponent has broken sensors or
actuators, or lacks some crucial information. If we try
to play our half of an equilibrium strategy, we may end
up worse off if the opponent does not play its half of
the strategy. To counter this problem, we would like
to be able to model as many different types of poten-
tial opponents as possible. When one of our opponent
models is correct, we would like to be performing op-
timally with respect to that model. If none of our
models is correct, we would still like to avoid perform-
ing too poorly. The framework of regret minimizing,
or hedging, algorithms provides a useful setup for ap-
proaching this problem. Using this framework, we can
simultaneously achieve both of these goals: perform
optimally if one of our models is correct, and still per-
form reasonably well if none of our models are correct.
Since we know that it is impossible to design an algo-
rithm that performs optimally with respect to all pos-
sible opponents (Nachbar & Zame, 1996), this is the
best we can hope to do in a non-cooperative setting.

2. Mathematical setup

Repeated games form the simplest possible framework
for studying multi-agent learning algorithms and their
resulting behavior. We will focus on this setup, al-
though most of the ideas presented in this paper can
be easily extended to handle stochastic games as well.

Hedged learning: Regret-minimization with learning experts

r1 =

[

−1 1
1 −1

]

r1 =

[

1 −1
2 0

]

r2 = −r1 r2 =

[

1 2
−1 0

]

(a) Matching pennies (b) Prisoner’s Dilemna

Figure 1. Common examples of matrix games.

The repeated game is a generalization of the tra-
ditional one-shot or matrix game. In the one-shot
game, two players meet, choose actions, receive re-
wards based on the simultaneous actions taken, and
the game ends. Their actions and payoffs are given as
a reward matrix ri for each player, ri : A1 × A2 → R,
where Ai is the finite set of discrete actions available
to player i. Some common examples of two-player ma-
trix games are shown in Figure 1. The special case of
a purely competitive two-player game is called a zero-
sum game and must satisfy R1 = −R2.

Each player simultaneously chooses to play a particu-
lar action ai ∈ Ai, possibly drawn from a mixed policy
µi = PD(Ai), which is a probability distribution over
possible actions, and receives reward based on the joint
action taken. We use the terms policy and strategy in-
terchangeably.

In general, we would like to play a best response to the
opponent’s choice of action. If all players are playing
best responses to the other players’ strategies, then
the game is said to be in Nash equilibrium. Once all
players are playing a Nash equilibrium, no single player
has an incentive to unilaterally deviate from his equi-
librium policy. There is general agreement that Nash
equilibrium is an appropriate solution concept for one-
shot games. In contrast, for repeated games there are a
range of different possibilities. We would like to be able
to learn about our opponent using knowledge gained
from previous periods of play. Reinforcement learning
researchers initially focused their attention on learning
a single stationary policy µ to play at each time pe-
riod. This µ tries to maximize the learner’s expected
rewards in all future time periods, and is usually be
based upon equilibrium strategies computed at each
state of the stochastic game (Littman, 1994) (Hu &
Wellman, 1998).

Modern game theory often takes a more general view
of optimality in repeated games. The machine learn-
ing community has also recently begun adopting this
view (Chang & Kaelbling, 2001) (de Farias & Meg-
gido, 2004). The key difference is the treatment of the
history of actions taken in the game. Recall that in the

stochastic game model, we took µi = PD(Ai). Here
we redefine µi : H → Ai, where H =

⋃

t Ht and Ht

is the set of all possible histories of length t. Histories
are observations of joint actions, ht = (ai, a−i, h

t−1).
Player i’s strategy at time t is then expressed as
µi(h

t−1). For simplicity, we will assume A = A1 = A2.

Definition 1 A τ -length behavioral strategy µτ is a
mapping from all possible histories Hτ to actions a ∈
A. Let Mτ be the set of all possible τ -length behavioral
strategies µτ .

We note that |Mτ | = |A||A|2τ

. In the case where we
take Ht = H, we could even consider learning algo-
rithms themselves to be a possible “behavioral strat-
egy” for playing a repeated game.

This definition of our strategy space is clearly more
powerful, and allows us to define a much larger set
of potential equilibria. However, when the opponent
is not rational, it is no longer advantageous to find
and play an equilibrium strategy. In fact, given an ar-
bitrary opponent, the Nash equilibrium strategy may
return a lower payoff than some other action. Indeed,
the payoff may be even worse than the original Nash
equilibrium value. Thus, we turn to regret minimiza-
tion algorithms.

2.1. Regret-minimization

In repeated games, the standard regret minimization
framework enables us to perform almost as well as
the best action, if that single best action were played
in every time period. Suppose we are playing using
some regret-minimizing algorithm which outputs ac-
tion choices at ∈ A at each time period. Then our
reward over T time periods is R(T) =

∑T
t=1

rat
(t).

Definition 2 Our regret is defined to be Rmax(T) −
R(T), where Rmax(T) = maxa∈A

∑T
t=1

ra(t). If our
algorithm randomizes over possible action choices, we
also define expected regret to be Rmax(T) − E[R(T)].
The set of actions against which we compare our per-
formance is called the comparison class.

Both game theorists and online learning researchers
have studied this framework (Fudenburg & Levine,
1995) (Freund & Schapire, 1999). We will refer fre-
quently to the EXP3 algorithm (and its variants) ex-
plored by Auer et al. (1995). In the original formu-
lation of EXP3, we choose single actions to play, but
we do not get to observe the rewards we would have
received if we had chosen different actions. The au-
thors show that the performance of EXP3 exhibits a
regret bound of 2

√
e − 1

√
TN lnN . Generally speak-

ing, these regret-minimizing algorithms hedge between

Hedged learning: Regret-minimization with learning experts

possible actions by keeping a weight for each action
that is updated according to the action’s historical per-
formance. The probability of playing an action is then
its fraction of the total weights mixed with the uniform
distribution. Intuitively, better experts perform bet-
ter, get assigned higher weight, and are played more
often. Sometimes these algorithms are called experts
algorithms, since we can think of the actions as being
recommended by a set of experts.

It is important to note that most of these existing
methods only compare our performance against strate-
gies that are best responses to what are often called
oblivious or myopic opponents. That is, the opponent
does not learn or react to our actions, and essentially
plays a fixed string of actions. Our best response would
be to play the single best-response action to the empir-
ical distribution of the opponent’s actions. Under most
circumstances, however, we might expect an intelligent
opponent to change their strategy as they observe our
own sequence of plays.

For example, consider the game of repeated Prisoner’s
Dilemma. If we follow the oblivious opponent assump-
tion, then the best choice of action would always be to
“Defect.” Given any fixed opponent action, the best
response would always be to defect. This approach
would thus miss out on the chance to earn higher re-
wards by cooperating with opponents such as a “Tit-
for-Tat” opponent, which cooperates with us as long
as we also cooperate. These opponents can be called
reactive opponents. Mannor and Shimkin (2001) pro-
pose a super-game framework for extending the regret-
minimization framework to handle such cases. In the
super-game framework, we evaluate an expert’s per-
formance not based on single periods of play; instead
each time we play an action or strategy, we commit
to playing it for multiple time steps in order to allow
the environment to react to our strategy. de Farias
and Meggido (2004) also explore this problem using a
different performance metric.

3. Extending the experts framework

Our extensions to the regret-minimization framework
follow along the lines of the super-game setup. In-
stead of choosing actions from A, we choose behav-
ioral strategies from Mτ . Mτ also replaces A as our
comparison class, essentially forcing us to compare our
performance against more complex and possibly bet-
ter performing strategies. While executing µτ ∈ Mτ

for some number of time periods λ, the agent receives
reward at each time step, but does not observe the re-
wards he would have received had he played any of his
other possible strategies. This is reasonable since the

opponent may adapt differently as a particular strat-
egy is played, causing a different cumulative outcome
over λ time periods. Thus, the opponent could be an
arbitrary black-box opponent or perhaps a fixed finite
automaton. While the inner workings of the opponent
are unobservable, we will assume the agent is able to
observe the action that the opponent actually plays at
each time period.

For example, we might consider an opponent whose
action choices only depend on the previous τ -length
history of joint actions. Thus, we can construct a
Markov model of our opponent using the set of all
possible τ -length histories as the state space. If our
optimal policy is ergodic, we can use the mixing time
of the policy as our choice of λ, since this would give
us a good idea of the average rewards possible with
this policy in the long run. We will usually assume
that we are given λ.

Definition 3 Let M be a Markov decision process
that models the environment (the opponent), and let
π be a policy in M such that the asymptotic aver-
age reward V π

M = limT→∞ V π
M (i, T) for all i, where

V π
M (i, T ′) is the average undiscounted reward of M un-

der policy π starting at state i from time 1 to T ′. The
ǫ-commitment time λπ of π is the smallest T such that
for all T ′ ≥ T , |V π

M (i, T ′) − V π
M | ≤ ǫ for all i.

Thus, if we are executing a policy π learned on a par-
ticular opponent model M , then we must run the pol-
icy for at least λ time periods to properly estimate
the benefit of using that policy. For example, in the
Prisoner’s Dilemma game shown in Figure 1, assum-
ing a Tit-for-Tat opponent, we might fix λ = 10, since
the average reward of playing “always cooperate” for
n time periods is always within 2

n of the long-run re-
ward. After playing this policy for 10 periods, we know
that we will gain an average reward within 1/5 of the
long-term average reward of 1. This is due to the fact
that in the first time period, the opponent may still
be playing “defect”, giving us a reward of -1 for that
time period. We will then receive reward of 1 in each
ensuing period.

Given a fixed commitment length λ, we may like to
be able to evaluate all possible strategies in order to
choose the optimal strategy. This would entail enu-
merating all possible behavioral strategies over λ pe-
riods. Since the hedging algorithm will essentially
randomize between strategies for us, we only need to
consider deterministic behavioral strategies. However,

there are still |A||A|2λ

possible strategies to evaluate.
Not only would this take a long time to try each pos-
sible strategy, but the regret bounds also become ex-

Hedged learning: Regret-minimization with learning experts

ceedingly weak. The expected regret after T time pe-
riods is:

2
√

e − 1|A||A|2λ/2|A|2λ
√

Tλ ln |A|,

Clearly this amounts to a computationally infeasible
approach to this problem. In traditional MDP solu-
tion techniques, we are saved by the Markov prop-
erty of the state space, which reduces the number of
strategies we need to evaluate by allowing us to re-
use information learned at each state. Without any
assumptions about the opponent’s behavior, as in the
classic regret minimization framework, we cannot get
such benefits.

4. Learning Algorithms as Experts

However, we might imagine that not all policies are
useful or fruitful ones to explore, given a fixed commit-
ment length of λ. In fact, in most cases, we probably
have some rough idea about the types of policies that
may be appropriate for a given domain. For example,
in our Prisoner’s Dilemma example, we might expect
that our opponent is either a Tit-for-Tat player, an
Always-Defect or Always-Cooperate player, or a “Usu-
ally Cooperate but Defect with probability p player”,
for example.

Given particular opponent assumptions, such as pos-
sible behavioral models, we may then be able to use a
learning algorithm to estimate the model parameters
based on observed history. For example, if we believe
that the opponent may be Markov in the τ -length his-
tory of joint actions, we can construct a Markov model
of the opponent and use an efficient learning algorithm
(such as E3 from Kearns and Singh (1998)) to learn the
ǫ-optimal policy in time polynomial to the number of
states, |A|2τ . In contrast, the hedging algorithm needs
to evaluate each of the exponentially large number of
possible policies, namely |A||A|2τ

possible policies. To
make this precise, we state the following lemma.

Proposition 4 Given a model of the opponent that
is Markov in the τ -length history of joint actions
{ai

t−τ , a−i
t−τ , . . . , ai

t−1, a
−i
t−1}, and given a fixed mixing

time λ, the number of actions executed by E3 and a
hedging algorithm such as EXP3 in order to arrive at
an ǫ-optimal policy is at most O

(

|A|10τ
)

for E3, and

at least O
(

|A||A|2τ

)

for the hedging algorithm.

Of course, using this method, we can no longer guar-
antee regret minimization over all possible policies,
but as we will discuss in the following section, we can
choose a subset of fixed policies against which we can
compare the performance of any learning algorithms

we decide to use, and we can guarantee no-regret rel-
ative to this subset of fixed policies, as well as relative
to the the learning algorithms.

In some ways, using learning algorithms as experts
simply off-loads the exploration from the experts
framework to each individual learning algorithm. The
computational savings occurs because each learning
algorithm makes particular assumptions about the
structure of the world and of the opponent, thus en-
abling each expert to learn more efficiently than hedg-
ing between all possible strategies.

4.1. Example

D

10 2 3 4

C C

C

C C

D

D
D D

Figure 2. A possible opponent model with five states. Each
state corresponds to the number of consecutive “Cooper-
ate” actions we have just played.

For example, consider again the repeated Prisoner’s
Dilemma game. We might believe that the opponent
reacts to our past level of cooperation, cooperating
only when we have cooperated a consecutive number of
times. If the opponent cooperates only when we have
cooperated four periods in a row, then the opponent
model shown in Figure 2 would correctly capture the
opponent’s state dynamics. This model is simpler than
a full model using all possible 4-period histories, since
it assumes that the opponent’s state is completely de-
termined by our half of the joint history. In the figure,
the labeled transitions correspond to our actions, and
the opponent only cooperates when it is in state 4;
otherwise it defects.

To learn the optimal policy with respect this opponent
model, a learning algorithm would simply have to visit
all the state-action pairs and estimate the resulting
reward for each possible action at each state. Since we
assume that the opponent model is Markov, we can
use an efficient learning algorithm such as E3.

Note that using this particular model, we can also
learn the optimal policy for an opponent that coop-
erates if we cooperate for some given n consecutive
periods, where n ≤ 4. However, if n ≥ 5, learning
using this model will no longer result in the optimal
policy. Whereas choosing the cooperate action from
state 4 results in a good reward when n ≤ 4, when
n ≥ 5 the same action results in a bad reward since

Hedged learning: Regret-minimization with learning experts

the opponent will most likely play defect. The prob-
lem is that the 5-state model is no longer sufficient
to capture the opponent’s state dynamics, and is no
longer Markov.

5. The Hedged Learner

Since our chosen learning algorithms will sometimes
fail to output good policies, we propose to incorpo-
rate them as experts inside a hedging algorithm that
hedges between a set of experts that includes our learn-
ers. This allows the hedging algorithm to switch to
using the other experts if a particular learning algo-
rithm fails. It might fail due to incorrect opponent
assumptions, such as in the previous section’s exam-
ple, or the learning algorithm may simply be ill-suited
for the particular domain, or it may fail for any other
reason. The point is that we have a backup plan, and
the hedging algorithm will eventually switch to using
these other options.

We study two methods for adding learning experts into
a regret-minimization algorithm such as Auer et al.’s
EXP3. It is straightforward to extend our results to
other variants of EXP3 such as EXP3.P.1, which guar-
antees similar bounds that hold uniformly over time
and with probability one.

We are given N fixed experts, to which we must add
M learning experts. We assume that λi = 1 for all i ∈
N and refer to these experts as static experts. These
static experts are essentially the pure action strategies
of the game. For all i ∈ M , we assume λi > 1 and
note that M can also include behavioral strategies.
When it is clear from context, we will often write N
and M as the number of experts in the sets N and M ,
respectively.

• Naive approach: Let λmax = maxi λi. Once an
expert is chosen to be followed, follow that expert
for a λmax-length commitment phase. At the end
of each phase, scale the accumulated reward by

1

λmax

since EXP3 requires rewards to fall in the
interval [0,1] and update the weights as in EXP3.

• Hierarchical hedging: Let E0 denote the top-
level hedging algorithm. Construct a second-level
hedging algorithm E1 composed of all the origi-
nal N static strategies. Use E1 and the learning
algorithms as the M + 1 experts that E0 hedges
between.

5.1. Naive approach

The Naive approach may seem like an obvious first
method to try. However, we will show that it is dis-

tinctly inferior to hierarchical hedging.

Theorem 5 Suppose we have a set N of static ex-
perts, and a set M of learning experts with time hori-
zons λi. Using a naive approach, we can construct an
algorithm with regret bound

2
√

e − 1
√

λmaxT (N + M) ln(N + M).

Proof. We run EXP3 with the M + N experts, with
a modification such that every expert, when chosen,
is followed for a commitment phase of length λmax

before we choose a new expert. We consider each
phase as one time period in the original EXP3 al-
gorithm, and note that the accumulated rewards for
an expert over a given phase falls in the interval
[0, λmax]. Thus, the regret bound over T

λmax

phases is

2λmax

√
e − 1

√

T
λmax

(N + M) ln(N + M), and the re-

sult follows immediately. ¤

5.2. Hierarchical hedging

The Naive Approach suffers from two main drawbacks,
both stemming from the same issue. Because the
Naive Approach follows all experts for λmax periods, it
follows the static experts for longer than necessary. In-
tuitively, this slows down the algorithm’s adaptation
rate. Furthermore, we also lose out on much of the
safety benefit that comes from hedging between the
pure actions. Whereas a hedging algorithm over the
set of pure actions is able to guarantee that we attain
at least the safety (minimax) value of the game, this
is no longer true with the Naive approach since we
have not included all possible λmax-length behavioral
experts. Thus, each expert available to us may incur
high loss when it is run for λmax periods. Hierarchical
Hedging addresses these issues.

Theorem 6 Suppose we have a set N of static ex-
perts, and a set M of learning experts with time hori-
zons λi, maxi λi > |N |. We can devise an algorithm
with regret bound:

2
√

e − 1
√

TN lnN

+ 2
√

e − 1
√

λmaxT (M + 1) ln(M + 1) .

This upper bound on the expected regret improves
upon the Naive Approach bound as long as

λmax ≥
√

lnN
√

ln(M + N) −
√

ln(M + 1)
.

In practice, we will often use only one or two learning
algorithms as experts, so M is small. For M = 1, the

Hedged learning: Regret-minimization with learning experts

bound would thus look like:

2.63
√

TN lnN + 3.10
√

λmaxT .

However, we note that these are simply upper bounds
on regret. In Section 5.3, we will compare actual per-
formance of these two methods in a some test domains.

Proof. Using the bounds shown to be achieved by
EXP3, our top-level hedging algorithm E0 achieves
performance

RE0
≥ max

i∈M+{E1}
Ri − 2

√
e − 1

√

T (M + 1) ln(M + 1).

Now consider each of the |M | + 1 experts. The |M |
learning experts do not suffer additional regret since
they are not running another copy of EXP3. The ex-
pert E1 is running a hedging algorithm over |N | static
experts, and thus achieves performance bounded by

RE1
≥ max

j∈N
Rj − 2

√
e − 1

√

λmaxTN lnN.

Combining this with the above, we see that

RE0
≥ maxi∈M+N Ri

−2
√

e − 1
√

TN lnN

−2
√

e − 1
√

λmaxT (M + 1) ln(M + 1). ¤

Proposition 7 The Hierarchical Hedging algorithm
will attain at least close to the safety value of the
single-shot game.

Proof. From an argument similar to Freund and
Schapire (1999), we know that the second-level expert
E1 will attain at least the safety value (or minimax)
value of the single-shot game. Since the performance
of the overall algorithm E0 is bounded close to the
performance of any of the experts, including E1, the
Hierarchical Hedger E0 must also attain close to the
safety value of the game. ¤

As desired, hierarchical hedging is an improvement
over the naive approach since: (1) it no longer needs to
play every expert for λmax-length commitment phases
and thus should adapt faster, and (2) it preserves the
original comparison class by avoiding modifications to
the original experts, allowing us to achieve at least the
safety value of the game.

Remark. It is also possible to speed up the adapta-
tion of these hedged learners by playing each expert
i for only λi time periods, weighting the cumulative
rewards received during this phase by 1/λi, and using
this average reward to update the weights. Applied to
the hierarchical hedger, we would play each learning
algorithm i for λi-length phases and the second-level
hedging algorithm E1 for N -length phases. In prac-
tice, this often results is some performance gains.

Table 1. Comparison of the performance of the different
methods for structuring the hedged learner.

Regret Actual Actual
Bound Expected Regret Performance

Naive 125,801 34,761 -96,154
Hierarchical 36,609 29,661 -8,996

5.3. Practical comparisons

We can verify the practical benefit of hierarchical hedg-
ing with a simple example. We consider the repeated
game of Matching Pennies, shown in Figure 1. As-
sume that the opponent is playing a hedging algorithm
that hedges between playing “Heads” and “Tails” ev-
ery time period. This is close to a worst-case scenario
since the opponent will be adapting to us very quickly.

We run each method for 200,000 time periods. The
Hierarchical Hedger consists of 9 single-period experts
grouped inside E1 and one 500-period expert. The
Naive Hedger runs all the experts for 500 periods each.
The results are given in Table 1, along with the ex-
pected regret upper bounds we derived in the previous
section. As expected, the hierarchical hedger achieves
much better actual performance in terms of cumulative
reward over time, and also achieves a lower expected
regret. However, the regret for the naive approach is
surprisingly low given that its performance is so poor.
This is due to a difference in the comparison classes
that the methods use. In the naive approach, our per-
formance is compared to experts that choose to play
a single action for 500 time periods, rather than for
a single time period. Any single action, played for a
long enough interval against an adaptive opponent, is a
poor choice in the game of matching pennies. The op-
ponent simply has to adapt and play its best response
to our action, which we are then stuck with for the rest
of the interval. Thus the expected rewards for any of
the experts in the naive approach’s comparison class is
rather poor. For example, the expected reward for the
“Heads” expert is -98,582. This explains why our ex-
pected regret is small, even though we have such high
cumulative losses; we are comparing our performance
against a set of poor strategies!

6. Experimental Results

Since the worst-case bounds we derived in the pre-
vious section may actually be quite loose, we now
present some experimental results using this approach
of hedged learning. We consider the repeated Pris-

Hedged learning: Regret-minimization with learning experts

-100

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600 700 800

C
um

ul
at

iv
e

R
ew

ar
d

Time

Performance of Learners with Differing Opponent Models

4-state Learner
10-state Learner
30-state Learner

Figure 3. This graph shows the performance of learning al-
gorithms against a Tit-for-Ten-Tats opponent. As the op-
ponent model grows in size, it takes longer for the learning
algorithm to decide on an optimal policy.

oner’s Dilemma game, and we first assume that the
unknown opponent is a “Tit-for-Ten-Tats” opponent.
That is, the opponent will only cooperate once we have
cooperated for ten time periods in a row.

We use a variety of different opponent models with
simple learning algorithms, pure hedging algorithms
that only hedge between static experts, and hedged
learning algorithms that combine learning algorithms
with static experts. First, we note that larger oppo-
nent models are able to capture a larger number of
potential opponent state dynamics, but require both
a longer commitment phase λ and a larger number of
iterations before a learning algorithm can estimate the
model parameters and solve for the optimal policy. For
example, Figure 3 shows the performance of three dif-
ferent n-state learners, with n = 4, 10, 30. As discussed
earlier in Section 4, the 4-state learner is unable to cap-
ture the opponent’s state dynamics and thus learns an
“optimal” policy of defecting at every state. This re-
sults in an average reward of zero per time step. On
the other hand, the 10-state and 30-state learners lose
some rewards while they are exploring and learning the
parameters of their opponent models, but then gain an
average reward of 1 after they have found the optimal
policy of always cooperating.

Figure 4 shows the performance of various learning and
hedging algorithms. The “1-period experts” hedging
algorithm hedges between single periods of cooperat-
ing and defecting. This myopic algorithm is unable
to learn the cooperative outcome and thus ends up
achieving the single-shot Nash equilibrium value of 0.
It assigns a very high weight to the Defect expert. On

-5000

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 5000 10000 15000 20000 25000 30000 35000 40000

C
um

ul
at

iv
e

R
ew

ar
d

Time

Performance of Hybrid Experts-Learners Algorithms Compared

4-state Learner
10-state Learner
1-period experts

25-period experts
25-period experts w/ 10-state Learner

25-period experts w/ 4-state Learner

Figure 4. This chart shows the performance of different
learning, hedging, and hedging learning algorithms in a
game of repeated prisoner’s dilemma against a Tit-for-Ten-
Tats opponent.

the other hand, the “25-period experts” hedging al-
gorithm switches between two experts which either
cooperate or defect for all possible 25-period histo-
ries. This algorithm realizes that the “always cooper-
ate” expert attains higher reward and thus eventually
plays Cooperate with probability approaching 1. The
hedged 10-state learner is also able to achieve the co-
operative outcome. It achieves cumulative reward only
slightly lower than the unhedged 10-state learner, since
it quickly realizes that the “always cooperate” policy
and the learned optimal policy both return higher re-
wards than the “always defect” policy.

One main benefit of the hedged learning approach be-
comes evident when we observe the performance of
the hedged 4-state learner. Even though the 4-state
model is unable to capture the state dynamics and the
learning algorithm thus fails to learn the cooperative
policy, the hedged 4-state learner is able to achieve av-
erage rewards of 1 as it assigns larger and larger weight
to the “always cooperate” expert and learns to ignore
the recommendations of the failed learning expert. We
have wisely hedged our bets between the available ex-
perts and avoided placing all our bets on the learning
algorithm.

Another major benefit of using hedged learners occurs
when the environment is non-stationary. For example,
assume that the opponent switches between playing
Tit-for-Ten-Tats (“Cooperate for 10 Cooperates”) and
“Cooperate for 10 Defects” every 15,000 time periods.
While the unhedged learner becomes confused with
each switch, the hedged learner is able to adapt as the
opponent changes and gains higher cumulative rewards

Hedged learning: Regret-minimization with learning experts

-5000

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

C
um

ul
at

iv
e

R
ew

ar
d

Time

Performance of Algorithms When Opponent Switches Strategies

10-state Learner
Hedged Learner

Figure 5. In these trials, the opponent switches strategy
every 15,000 time periods. It switches between playing Tit-
for-Ten-Tats (“Cooperate for 10 Cooperates”) and “Coop-
erate for 10 Defects”. While the modeler becomes confused
with each switch, the hedging learner is able to adapt as
the opponent changes and gain higher cumulative rewards.

(Figure 5). Note that when the opponent does its first
switch, the unhedged learner continues to use its co-
operative policy, which was optimal in the first 15,000
periods but now returns negative average reward. In
contrast, the hedged learner is able to quickly adapt
to the new environment and play a primarily defecting
string of actions. Figure 6 shows how the hedging al-
gorithm is able to change the probabilities with which
it plays each expert as the environment changes, i.e.
when the opponent switches strategies.

7. Conclusion

Hedged learning is able to incorporate various possi-
ble opponent models as well as various possible fixed
strategies into its hedging framework. It is thus able
to benefit from the efficiencies of using learning al-
gorithms to learn optimal policies over these models,
while ensuring that it has the option of falling back
on the fixed strategies in case the learning algorithms
fail to output any good policies. Even when the op-
ponent switches strategies during play, hedged learn-
ing is able to adapt to its changing environment and
switch to using the expert best adapted to the new
opponent strategy. To make this approach concrete,
we showed two possible methods for combining learn-
ing algorithms with a fixed set of static experts, and
provided regret bounds in each case. Finally, we note
that all of our results still hold for > 2 players, since we
only require observations of our own reward and the
history of actions. Furthermore, we can also extend

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

P
ro

ba
bi

lit
y

of
 P

la
yi

ng

Time

Probability with which Cooperation or Defection is chosen over time

Learned
Defect

Cooperate

Figure 6. Graph showing the probability with which the
weighted hedger plays either a cooperating strategy or a de-
fecting strategy against the switching opponent over time.

these techniques for use in stochastic games.

References

Auer, P., Cesa-Bianchi, N., Freund, Y., & Schapire, R. E.
(1995). Gambling in a rigged casino: the adversarial
multi-armed bandit problem. Proceedings of the 36th
Symposium on Foundations of Computer Science.

Chang, Y., & Kaelbling, L. P. (2001). Playing is believing:
The role of beliefs in multi-agent learning. NIPS.

de Farias, D. P., & Meggido, N. (2004). How to combine
expert (or novice) advice when actions impact the envi-
ronment. Proceedings of NIPS.

Freund, Y., & Schapire, R. E. (1999). Adaptive game play-
ing using multiplicative weights. Games and Economic
Behavior, 29, 79–103.

Fudenburg, D., & Levine, D. K. (1995). Consistency and
cautious fictitious play. Journal of Economic Dynamics
and Control, 19, 1065–1089.

Hu, J., & Wellman, M. P. (1998). Multiagent reinforcement
learning: Theoretical framework and an algorithm. Pro-
ceedings of the 15th ICML.

Kearns, M., & Singh, S. (1998). Near-optimal reinforce-
ment learning in polynomial time. ICML.

Littman, M. L. (1994). Markov games as a framework for
multi-agent reinforcement learning. ICML.

Mannor, S., & Shimkin, N. (2001). Adaptive strategies
and regret minimization in arbitrarily varying Markov
environments. Proc. of 14th COLT.

Nachbar, J., & Zame, W. (1996). Non-computable strate-
gies and discounted repeated games. Economic Theory.

