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Abstract

There is a range of potential applications of
Machine Learning where it would be more
useful to predict the probability distribution
for a variable rather than simply the most
likely value for that variable. In meteorology
and in finance it is often important to know
the probability of a variable falling within (or
outside) different ranges. In this paper we
consider the prediction of surf height with the
objective of predicting if it will fall within a
given ‘surfable’ range. Prediction problems
such as this are considerably more difficult if
the distribution of the phenomenon is signif-
icantly different from a normal distribution.
This is the case with the surf data we have
studied. To address this we use an ensemble
of mixture density networks to predict the
probability density function. Our evaluation
shows that this is an effective solution. We
also describe a web-based application that
presents these predictions in a usable man-
ner.

1. Introduction

There are many prediction problems where simple
‘point’ predictions are not adequate to guide action.
In meteorology and in finance it is often important
to know the probability of a variable falling within
(or outside) different ranges. It might be that a 20%
probability of flooding may be enough to place emer-
gency services on alert. Or the best returns in financial
trading might come from events that have a small but
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significant probability. Problems such as these have
generated an interest in the area of probability den-
sity forecasting. Research in this area is complicated
because the data may have a multi-modal generating
distribution. In addition, in many scenarios, variance
is input-dependent. Recently, research in the financial
domain has suggested that the reason why non-linear
models do not perform significantly better than linear
models is because the non-linearity in the data is due
to input-dependent higher order moments (Clements
& Smith, 2000).

In this paper we consider the prediction of surf height
with the objective of predicting if it will fall within
a given ‘surfable’ range. To produce these ranges we
have created a model that predicts the whole condi-
tional probability density function for the target, from
this we can then extract the probability of the esti-
mated maximum surf height falling between the spec-
ified ranges from the density function. The surf data
has a highly skewed unconditional distribution. We
intend to show that our ensemble of probabilistic mod-
els can outperform standard neural networks on data
that is conditionally skewed. We use Mixture Den-
sity Networks (MDNs) as our base model, this class
of model has been shown to be successful for com-
plex multi-valued functions where standard regression
models fail.

The paper is laid out as follows. In Section 2 the
details of the surf prediction problem are presented.
In Section 3 a review of the issues associated with
predicting distributions is presented and our method
based on ensembles of Mixture Density Networks is
described. Section 4 discusses the issues posed in eval-
uating density predictions and describes the metrics
we use. These metrics are used to analyze the per-
formance of the ensemble of MDNs on artificial data
in Section 5. The Surf Prediction Engine is described
in Section 6 and an evaluation of its performance is
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presented in Section 7.

2. The Surf Prediction Problem

The popular sport of surfing requires suitable ocean
and weather conditions. Of specific interest to surfers
is the near-shore wave height at locations where surf
breaks are accessible. The prediction of wave heights
is aided by the US National Oceanic and Atmospheric
Administration (NOAA) which provides open ocean
wave forecasts online for specific locations in the Pa-
cific and Atlantic oceans (Tolman, 1999). Any ocean
wave can be characterised as a vector quantity, with
the direction expressed in terms of degrees (clockwise,
from Polar North) and the magnitude represented by
two scalar quantities: the wave height (vertical dis-
tance from trough to crest) and its period (Komen
et al., 1994). The period of a wave is directly propor-
tional to its kinetic energy. NOAA generates forecasts
of ocean waves using both the WAM model (Hassel-
mann et al., 1988), a model of the physical processes
governing wave evolution, and real-time data from
moored buoys. Seven-day forecasts are provided for
the estimated height, period and direction of waves
at the buoy locations. The relationship, however, be-
tween open ocean wave height and the subsequent surf
height at near-shore surf breaks is complex. Physics al-
lows us to model how waves can be refracted, reflected,
diffracted and ultimately break when they come into
contact with shallow water or land (Butt et al., 2004).
However, mathematical models based on physics re-
quire precise parameters not only of the wave dynam-
ics at buoys, but also of islands, shoreline features, the
angle of exposure of the surf break and the profile of
the sea floor around the surf break. Partial, informal
information on these parameters is available in surf
guides (Colas, 2004) (e.g. minimum and maximum
height at which waves are surfable), but due to the
lack of available information on the many other pa-
rameters, it is not currently possible to build general
linear or non-linear models for predicting wave heights
at the diverse surf breaks around the world.

Our approach is intended to sit in between the low
resolution open ocean forecast and the very high res-
olution of a physics model. We use an ensemble of
well calibrated mixture density networks to obtain ac-
curate forecasts of the probable maximum surf-zone
wave heights given data buoy readings. The ensemble
is trained on data that combines the environmental
readings from the off-shore data buoy with local, ex-
pert, visual recordings of the surf-zone maximum wave
heights.

We have compiled a new database that combines

surf zone observations with off-shore buoy readings.
The data used in this study comes from two primary
sources. The off-shore environmental data needed to
make the near-shore surf predictions comes from a
moored buoy1 off the south west of Ireland. The ob-
servations of the near-shore wave heights are recorded
by a surf expert2. The observations are coupled with
the buoy data by calculating the time delay between
the buoy reading and the experts observation using the
wave period and buoy to shore distance. The database
contains 260 vectors.

3. Predicting Distributions

The standard solution to regression problems is to
apply a sum-of-squares error function to N training
data pairs, (x1, t1), ..., (xn, tn), to predict a conditional
mean of a new unseen data vector, 〈tn+1|xn+1〉. This
form of point prediction is often inadequate in prac-
tice because there is no indication of the level of un-
certainty in the model’s predictions. The most rudi-
mentary method of quantifying this uncertainty is to
report a mean-squared-error (MSE). This is the aver-
age uncertainty in the model over the complete input
training set. The combination of a point prediction
with MSE makes the assumption that the uncertainty
in the model is described by a Gaussian conditional
density function with constant variance equal to the
MSE.

Quantifying the uncertainty in each individual predic-
tion is our goal. To model this uncertainty we could
use confidence intervals, however, De Finetti (1974)
argues that the only concept needed to express un-
certainty is probability, and so all predictions over a
future event should be made in terms of probability
distributions. Consequently, our goal, and the goal
when making any prediction with uncertainty, is to
create a model of the process as a sequence of proba-
bility density functions. This means that for any given
input value e.g. xn+1, our model should produce a
conditional density function p(tn+1|xn+1).

There exist a number of approaches to obtain esti-
mates of the conditional density function. Fraser and
Dimitriadis (1993) initially developed a Hidden Fil-
ter Hidden Markov Model using the EM algorithm to
produce predictions of conditional density forecasts.
Weigend and Nix (1994) suggest a neural network ar-

1The National Center for Environmental Prediction
(NCEP) maintains a number of buoys in the east-
ern Atlantic, our data comes from buoy 62081. See
http://www.ncep.noaa.gov/

2Surf observations are published daily by the Lahinch
Surf Shop. See http://www.lahinchsurfshop.com/
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chitecture that predicts the mean value and the lo-
cal error bars (standard deviations) for given inputs,
however, this approach assumes the data generating
distribution is a Gaussian. Neuneier et al. (1994)
and Bishop (1995) developed a semi-parametric con-
ditional density estimation network or mixture den-
sity network (MDN)3. This approach removes the need
to assume a Gaussian and can model unknown dis-
tributional shapes. Husmeier (1999) developed a two
hidden layer universal approximator called a random
vector functional link (RVFL) which also can predict
the whole conditional density function. Husmeier com-
pares his RVFL model with an MDN and shows that
both techniques produce results with equivalent accu-
racy. In this paper we will use an ensemble of MDNs to
make stable, accurate predictions of conditional den-
sity functions.

There are two important points that restrict predict-
ing the true generating distribution. Firstly, to define
the true conditional density function accurately infi-
nite parameters may be required. Secondly, each pre-
diction is a function, not a value; however, this func-
tion is estimated from observations alone. The aim of
a probabilistic model is to simulate the real conditional
density function as accurately as possible.

3.1. Ensembles of Mixture Density Networks

Mixture Density Networks (MDN) refer to a special
type of ANN in which the target is represented as a
probability distribution, or, more specifically, a condi-
tional probability density function. MDNs were first
introduced by Bishop (1995) and shown to success-
fully describe the conditional distribution for the mul-
timodal, inverse problem and Brownian process. Since
then they have been successfully applied to both finan-
cial (Schittenkopf et al., 2000) and meteorological data
sets (Cornford et al., 1999).

MDNs represent the conditional density function by a
weighted mixture of Gaussians known as a Gaussian
Mixture Model(GMM). GMMs are a flexible, conve-
nient, semi-parametric means of modeling unknown
distributional shapes. The conditional density func-
tion is described in the form

p(t|x) =

C∑
i=1

αi(x)φi(t|x) (1)

3Neuneier et al. use the name Conditional Density Es-
timation Network and Bishop uses the name Mixture Den-
sity Network, for consistency we will use only MDN from
now on.

where φi is a Gaussian as follows,

φi(t|x) =
1

(2π)q/2σi(x)c
exp(−

‖t − µi(x)‖2

2σi(x)2
) (2)

where C is the number of components in the mixture.
The parameter αi is the Gaussian weight or mixing co-
efficient and φi(t|x) represents the ith Gaussian com-
ponent’s contribution to the conditional density of the
target vector t. For a full discussion on the Mixture
Density Network architecture see (Bishop, 1995).

Due to the complexity of the local error curva-
ture, straightforward gradient descent fails to optimise
MDNs. To overcome this problem the optimisation
technique requires dynamic adjustment of the learn-
ing rate during the training process to efficiently con-
verge to a global minimum. We use Scaled Conju-
gate Gradients (SCG)(Moller, 1993) for optimisation
of our Mixture Density Networks. SCG uses the sec-
ond derivative Hessian matrix to find the most direct
route to the minimum.

With any neural network optimisation there is an in-
herent instability. This is due to the random initialisa-
tion of the network’s weight vectors. One approach to
reducing the instability in a neural network is to train
several neural networks and return an aggregate pre-
diction. This is called the ensemble technique. There
are two primary requirements for any ensemble ap-
proach, diversity in the individual networks, and the
ability to aggregate your results. Two approaches to
achieving these requirements are Bagging (Breiman,
1996) and Boosting (Freund & Schapire, 1996). We
have implemented both and outline our implementa-
tions below.

3.2. Bagging MDNs

Bagging is an abbreviation for bootstrap aggregation.
It uses the bootstrap, a statistical re-sampling tech-
nique, to generate multiple, diverse, training sets for
networks of an ensemble. A bagged neural network en-
semble generates training data for each ensemble mem-
ber by sampling from the bootstrap empirical distribu-
tion. A training set is created for each neural network
in the ensemble and the networks are trained on this
data.

Sporadically MDNs do not converge to a good solution
due to a very poor random starting position. To re-
duce the effect of these weak solutions on the ensemble
prediction we integrate the member solutions using a
form of balancing (Heskes, 1997). The training sets in
a bagged ensemble are generated by sampling with re-
placement from the original training set T . The prob-
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ability that the individual training vector, taken from
T , will not be part of a bootstrap re-sampled train-

ing set, T bootstrap, is (1 − 1/N)N ≈ 0.368 where N is
the number of training vectors in T . These omitted
training vectors make a new out-of-bootstrap (oob)
test set, T obb for the ensemble member trained with
T bootstrap. For each ensemble member we calculate
the error, Eoob, over the vectors in its T oob. We use
these error values to weight each member’s contribu-
tion to the ensemble prediction. Assuming there are
M ensemble members,

p(t|x) =

M∑
i=1

C∑
j=1

Eoob
i αi,j∑M

k=1
Eoob

k

(x)φi,j(t|x) (3)

where E is the Continuous Ranked Probability Score
error function and is described below. The new aggre-
gated GMM produced by the ensemble still obeys the
properties of a probability distribution.

3.3. Boosting MDNs

We have implemented AdaBoost.R2 (Drucker, 1997)
for MDNs. The means of obtaining diverse training
sets is distinctly different in boosting to bagging. In
boosting, training of ensemble members is carried out
sequentially. The vectors that have been ‘difficult’ for
ensemble members to estimate i.e. obtain large errors,
are more likely to appear in the training sets of sub-
sequent ensemble members. This restricts ensemble
members from being trained in parallel, however, it
has the advantage of reducing the bias of the resulting
ensemble.

To combine the ensemble members a weighted median
approach is used, the better performing members are
assigned a heavier weighting. Integration is achieved
in a similar way to the balancing method above; how-
ever, instead of using out-of-bootstrap vectors alone
the whole training set is used to calculate the weight-
ings.

4. Evaluating Probability Forecasts

A significant problem with probabilistic forecasting
models is determining a means of evaluating the re-
sults. If we assign some probability to the actual ob-
servation, can the prediction be wrong? To determine
whether a probabilistic model performs well you must
first decide on your goals. The objective when mak-
ing a density forecasting model is to, 1) create prob-
ability density functions that accurately predict the
region in which the target lies and, 2) provide well
calibrated probability estimates (Gneiting & Raftery,
2004). The first criterion refers to the spread of the

predictive density about the target. The second crite-
rion, calibration, is a measure of the statistical consis-
tency between the distributional forecasts and the ob-
servations. For example, a well calibrated model over
100 predictions for 100 events giving a particular out-
come a 10% probability would result in that outcome
occurring 10 times.

In this paper we use three error scores. Firstly, we use
the average negative log predictive density (NLPD)
(Good, 1952). This is the average value of the negative
of the logarithm of the predictive density p(...) at each
observation t.

NLPD =
1

N

N∑
i=1

−log(p(yi|xi)) (4)

The NLPD is a means of evaluating the amount of
probability that the network assigns the target. It pe-
nalises predictions that are either under or over confi-
dent. This metric is generally used in conjunction with
a standard distance metric to determine how far the
target is from the median or mean of the distribution.
We use the Mean Absolute Error (MAE) to calculate
this error. The MAE is the average absolute error of
predictions. It is a useful indication of the inaccuracy
of the model because it is in the resulting error value is
in the same units as the target values. We will use the
median of the predictive densities as point predictions
for our MDNs.

The third error score we use is the most comprehen-
sive, the Continuous Ranked Probability Score or the
CRPS. The CRPS (Gneiting & Raftery, 2004), is a
generalisation of the Brier Score. The advantage of
this error score is that it takes the whole distribu-
tion into consideration when measuring the error. The
CRPS score uses the cumulative probability density
function to determine the error.

crps(p, t) = −

∞∫

−∞

(p(y|x) − H(y, t))2dy (5)

where H(x, t) is the Heaviside function i.e.

H(x, t) = 1{x ≥ t} (6)

This function has a value of 1 if x is greater than t,
otherwise it has a value of 0.

This is a strictly proper scoring rule, i.e. the forecaster
will maximise their result for the forecast F if they
use the forecast F, rather than any G 6= F. This is
our preferred metric for scoring error because of its
sensitivity to distance. We use the average crps to
evaluate the results of a complete input set.
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CRPS =
1

N

N∑
i=1

crps(pi, yi) (7)

5. Analysis of Ensembles of MDNs on

Artificial Data

To demonstrate the MDNs ability to produce esti-
mates of the higher moment conditional density effects
we created a simple synthetic data set. Inputs for the
data are uniformly drawn from the interval [0,2]. The
target values are generated according to

t(x) = 4.26(e−x − 4e−2x + 3ex) + ǫ(x). (8)

where ǫ(x) represents random sample noise drawn
from the following distribution,

SN(x) =
2

0.2
φ(

y + 0.1

0.2
)Φ(λ

y + 0.1

0.2
) (9)

SN is the skew normal function (Azzalini, 1985) that
produces skewed distributions. φ(x) is the probability
density function and Φ(x) is the cumulative density
function. λ is the shape or skew parameter, a positive
value results in a positive skew and vice versa. When
λ is 0 the distribution is symmetric.

We generated 400 data pairs for training and 400 for
testing. The test set is illustrated in Figure 1. For
our experiment we trained five different types of net-
works; two ensembled point predictors, one trained
with boosting (boostNN), the other bagging (bagNN);
two ensembled MDNs, again one boosted (boostMDN)
and one bagged (bagMDN), and a single MDN. The
single MDN and the MDN ensemble members have a 2
Gaussian GMM output. We carried out tests for three
different values of λ (3 - slight skew, 6 - significant
skew, 9 - extreme skew). The variance is constant so
that we can measure the effects of the skew.

Table 1 shows the average result over 10 runs for the
three different experiments. The ensembles of MDNs
provide the best predictions over all datasets. The
single MDNs instability problem is also observed as
the MDN performs poorly on the slightly skewed data
but comparatively better on the more skewed data.

6. The Surf Prediction Engine

The surf prediction data is an example of a data set
which has an underlying noise dynamic that shows ev-
idence of higher moment influence. To demonstrate
this we carried out the following experiment. We used
10-fold cross-validation with a standard bagged ensem-
ble of neural networks and calculated the skew of the

Table 1. Experiment results for synthetic data

Slight Skew CRPS NLPD MAE

boostMDN 0.070 -0.660 0.099
bagMDN 0.070 -0.668 0.099

boostNN 0.071 -0.633 0.100
bagNN 0.071 -0.633 0.101
MDN 0.077 -0.603 0.107

Significant CRPS NLPD MAE

boostMDN 0.071 -0.678 0.102
bagMDN 0.071 -0.704 0.102

boostNN 0.072 -0.619 0.105
bagNN 0.073 -0.619 0.104
MDN 0.075 -0.668 0.107

Extreme CRPS NLPD MAE

boostMDN 0.067 -0.787 0.094
bagMDN 0.067 -0.790 0.094

boostNN 0.068 -0.677 0.098
bagNN 0.069 -0.664 0.098
MDN 0.070 -0.737 0.095

out-of-sample errors over all folds. The skew of this
distribution is 2.25 for the surf data4. This is a signif-
icant skew compared to a normal distribution.

Standard noise caused by observation errors would
naturally assume a Gaussian shape. If we assume
that ensembles of standard neural networks are a good
means of obtaining well generalised predictions and we
observe that the residuals of the results from the en-
semble of neural networks have significant higher mo-
ment influences, we can conclude that these higher mo-
ment influences are present as an underlying dynamic
in the data. This is the case in the analysis on artificial
data presented in Figure 1. The skew of the residuals
is almost identical to the skew of the added noise. Now
that we have determined the surf data is affected by
skewness we can continue to develop a prediction en-
gine that takes this information into consideration.

The boosted MDN is the base model for our surf pre-
diction engine (see Figure 2). It is trained on the data-
base described in Section 2 and produces conditional
density forecasts for future events. Once a conditional
density forecast has been made, this information can
be used by the surfer. The most useful means of ex-
tracting the required information from the model is for
the surfer to specify the wave heights that they can
surf i.e. their ‘surfable’ range and the times in which
they would like to surf. The engine will then deter-
mine from the predicted conditional density function
the probability of those conditions. In this sense the

4A standard normal distribution has a skew of 0
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Figure 1. (a) shows a contour map of the bagged ensemble of neural networks (bagNN). f(x) is the data-generating
function without added noise. The bounds of the distribution are symmetric and over estimate the uncertainty on the
lower values. (b) is a histogram of the errors from the bagNN point predictions, it strongly resembles the histogram of
the added noise (c). (d) shows the result from the Ensemble of MDNs. It can clearly be seen the skewed noise has been
correctly described.

model is giving a prediction that is tailored to the user.
By providing this auxiliary information the decision
maker can make a more informed choice.

7. Performance Evaluation

Figure 3 (a) shows 10 probability distributions derived
from the predicted conditional density functions of the
boosted ensemble of MDNs. This type of prediction
gives the user a number of useful pieces of informa-
tion. Firstly, between zero and four feet there is little
uncertainty for these predictions. However, the model
is much more uncertain about predictions of days when
the actual surf height is higher. The tenth prediction is
for the largest target and the probability distribution
shows a large amount of uncertainty (broad distribu-
tion). Figure 3 (b) plots the position of the median
and mode values of the predicted distributions. The
mode is the highest point on the distribution and rep-
resents the most typical outcome. The median is the
point that divides the distribution in half. The plot
shows that the model’s predicted median and mode
are a good point estimate of the observed values.

3 (b) confirms that the ensemble of MDNs is a useful
predictor in the classic point estimate sense. How-
ever, we need to evaluate the accuracy in terms of the
‘surfable range’ predictions as presented to the user in
Figure 2. Intuitively, an acceptable model from a users
perspective is one that is correct on average 83% of the
time on predictions that have an 83% confidence. For
our model this is the case, as shown in Table 2. In

Figure 2. This is a demonstration of the surf prediction
engine forecasting waves in the range 3 - 6ft. with 83%
probability. Detailed predictions for the morning are given
at the top with an image of the most similar day shown.
A two day summary chart is given at the bottom that
shows the probability of the different classes. Predictions
are provided over a seven day horizon.
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Figure 3. (a) 10 out-of-sample predictions from a boostMDN on the surf data. The horizontal lines through each distri-
bution represent the target observations. (b) shows the median and mode predictions relative to the target observations
of the predicted density functions.

Table 2. boostMDN results for prediction of surfable range
3 - 6 ft. The accuracy column represents the percentage
of correct predictions given the threshold. The Classifica-
tions column represents the number of instances where the
probability for a class exceeded the threshold.

Threshold Accuracy Classifications

Max 81.3% 260
70% 87.8% 193
80% 93.2% 158
90% 96.0% 130
95% 98.1% 110
99% 100.0% 72

this scenario the surfer has specified a 3ft - 6ft surfa-
ble range and predictions have been produced for 260
test days5. We can see from the table that the er-
ror is well correlated with the prediction confidence.
The results show that the boosted ensemble of MDNs
has a slightly over-cautious bias, but in general is well
calibrated and consistent. The number of correct pre-
dictions with respect to incorrect predictions obeys the
thresholds assigned i.e. when the threshold is set to
95% then the model is correct ≥ 95% of the time.

Finally, we evaluate the ensemble of MDNs predictions

5We use 10-fold cross validation to obtain test results
over the complete data set

Table 3. Results of experiments with surf data

CRPS NLPD MAE

boostMDN 0.493 1.186 0.701
0.161 0.299 0.226

bagMDN 0.504 1.170 0.718
0.184 0.340 0.262

boostNN 0.519 1.534 0.704
0.188 0.601 0.245

bagNN 0.521 1.483 0.700

0.127 0.451 0.147
MDN 0.518 1.477 0.736

0.169 0.540 0.244

on the surf data against our benchmark models, the
ensembles of NNs and a single MDN. These results
are shown in Table 3 with the best score on each met-
ric highlighted in bold. These figures are based on
a 10-fold cross validation and the variances over the
10-folds are also shown underneath each error score.
The boostMDN and bagMDN perform best on the
probabilistic error measures; however, they also per-
form comparably to the ensembles of NNs on the MAE
score.
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8. Conclusions

There are a range of applications for Machine Learn-
ing where a simple point prediction is not adequate to
guide decision making, for instance in meteorology and
finance. In this paper we present such an application.
Surf prediction involves forecasting whether conditions
on a surfing beach will be suitable for an individual
given their acceptable range of wave heights. We use
an ensemble of MDNs to predict the probability distri-
bution for the maximum wave height. The application
uses this distribution to estimate the probability that
the surf height will be within the range desired by the
user.

We have demonstrated that MDNs can be success-
fully combined in an ensemble to produce stable re-
sults. MDNs optimised using SCG generally produce
stable results; however, sporadically the network will
not converge to a useful minimum and the MDN will
not produce a good result. We overcome this by com-
bining several MDNs into an ensemble. Of the two
ensemble techniques we evaluate (bagging and boost-
ing) it appears that boosting produces slightly better
results. In our future work we intend to experiment
with other boosting techniques to further improve con-
ditional density prediction.
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