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Abstract

This paper explores the issue of recognizing,
generalizing and reproducing arbitrary ges-
tures. We aim at extracting a representa-
tion that encapsulates only the key aspects
of the gesture and discards the variability in-
trinsic to each person’s motion. We compare
a decomposition into principal components
(PCA) and independent components (ICA)
as a first step of preprocessing in order to
decorrelate and denoise the data, as well as
to reduce the dimensionality of the dataset
to make this one tractable. In a second stage
of processing, we explore the use of a proba-
bilistic encoding through continuous Hidden
Markov Models (HMMs), as a way to en-
capsulate the sequential nature and intrin-
sic variability of the motions in stochastic fi-
nite state automata. Finally, the method is
validated in a humanoid robot to reproduce
a variety of gestures performed by a human
demonstrator.

1. Introduction

Robot learning by imitation, also referred to as robot
programming by demonstration (RbD) explores novel
means of implicitly teaching a robot new motor skills.
Such approach to “learning by apprenticeship” has
proved to be advantageous for learning multidimen-
sional and non-linear functions. The demonstrations
constrain the search space by showing possible and/or
optimal solutions (Isaac & Sammut, 2003; Abbeel &
Ng, 2004; Billard et al., 2004). A core assumption of
such approach is that the demonstration set is suffi-
ciently complete and that it shows solutions that are
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also optimal, or at least possible, for the imitator.
The latter condition is not necessarily met when the
demonstrator and the imitator differ importantly in
their perception and action spaces, as it is the case
when transferring skills from a human to a robot.

In the work presented here, we go beyond pure ges-
ture recognition and explore the issues of recognizing,
generalizing and reproducing arbitrary gestures. We
aim at extracting a representation of the data that
encapsulates only the key aspects of the gesture and
discards the variability intrinsic to each person’s mo-
tion. This representation makes it, then, possible for
the gesture to be reproduced by an imitator agent (in
our case, a robot) whose space of motion differs signif-
icantly in its geometry and natural dynamics to that
of the demonstrator.

Recognition and generalization must span from a very
small dataset. Indeed, because one cannot ask the
demonstrator to produce more than 5 to 10 demonstra-
tions, one must use algorithms that manage to discard
the high variability of the human motions, while not
setting up priors on the representation of the dataset
(that is highly context- and task-dependent).

In our experiments, the robot is endowed with numer-
ous sensors enabling it to track faithfully the kinemat-
ics of the demonstrator’s motions. The data gathered
by the different sensors are redundant and correlated,
as well as subjected to various forms of noise (sensor
dependent). Thus, prior to applying any form of en-
coding of the gesture, we perform a decomposition of
the data into either principal components (PCA) or in-
dependent components (ICA), in order to decorrelate
and denoise the data, as well as to reduce the dimen-
sionality of the dataset to make this one tractable.

In order to generalize across multiple demonstrations,
the robot must encode multivariate time-dependent
data in an efficient manner. One major difficulty in
learning, recognizing and reproducing sequential pat-
terns of motion is to deal simultaneously with the spa-
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Figure 1. 1st and 3rd columns: Demonstration of different
gestures. 2nd and 4th columns: Reproduction of a gen-
eralized version of the gestures. The trajectories of the
demonstrator’s hand, reconstructed by the stereoscopic vi-
sion system, are superimposed to the image.

tial and temporal variations of the data, see e.g. (Chu-
dova et al., 2003). Thus, in a second stage of process-
ing, we explore the use of a probabilistic encoding
through continuous Hidden Markov Models (HMMs),
as a way to encapsulate the sequential nature and in-
trinsic variability of the motions in stochastic finite
state automata. Each gesture is, then, represented as
a sequence of states, where each state has an underly-
ing probabilistic description of the multi-dimensional
data (see Figure 2).

Similar approaches to extracting primitives of motion
have been followed, e.g., by (Kadous & Sammut, 2004;
Ijspeert et al., 2002). Our approach complements
(Kadous & Sammut, 2004) by investigating how these
primitives can be used to reconstruct a generalized and
parameterizable form of the motion, so that these can
be successfully transferred into a different dataspace
(that of the robot). Moreover, in contrast to (Ijspeert
et al., 2002), who take sets of Gaussians as the basis
of the system, we avoid predefining the form of the
primitives and let the system discover those through
an analysis of variance.

Closest in spirit to our approach is the work of (Abbeel
& Ng, 2004), who use a finite-state Markov decision
process to encode the underlying constraints of an ap-
prenticeship driving task. While this approach lies in
a discrete space, in our work, we must draw from con-
tinuous distributions to encapsulate the continuity in
time and space of the gestures.

2. Experimental set-up

Data consist of human motions performed by eight
healthy volunteers. Subjects were asked to imitate a

Figure 2. Encoding of the hand path �x(t) and of the

joint angles trajectories �θ(t) in a HMM. The data are
preprocessed by PCA or ICA, and the resulting signals

{ �ξx(t), �ξθ(t)} are learned by the HMM. The model is fully
connected (for clarity of the picture, some of the transitions
have been omitted).

set of 6 gestures demonstrated in a video recording.
The motions consist in: 1) Knocking on a door, 2)
Bringing a cup to one’s mouth and putting it back on
the table, 3) Waving goodbye and 4-6) Drawing the
stylized alphabet letters A, B and C (see Figure 1).

Three x-sens motion sensors attached to the torso and
the right upper- and lower-arm of the demonstrator
recorded the kinematics of motion of the shoulder joint
(3 degrees of freedom (DOFs)) and of the elbow joint
(1 DOF) with a precision of 1.5 degrees and at a rate of
100Hz. A color-based stereoscopic vision system tracks
the 3D-position of a marker placed on the demonstra-
tor’s hand, at a rate of 15Hz, with a precision of 10
mm.

The experiments are performed on a Fujitsu humanoid
robot HOAP-2 with 25 DOFs. Note that only the
robot’s right arm (4 DOFs) is used for reproducing
the gestures. The torso and legs are set to a constant
and stable position, in order to support the robot’s
standing-up.

3. Data processing

Let �x(t) = {x1(t), x2(t), x3(t)} be the hand path, and
�θ(t) = {θ1(t), θ2(t), θ3(t), θ4(t)} the joint angle trajec-
tories of the right arm after interpolation and normal-
ization in time. The data are first projected onto a
low-dimensional subspace, using either PCA or ICA.
The resulting signals are, then, encoded in a set of
HMMs (see Figure 2). A generalized form of the sig-
nals is, then, reconstructed by interpolating between
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the key-points retrieved by the HMMs. The complete
signals are then recovered by projecting the data onto
the robot’s workspace.

3.1. Principal Component Analysis (PCA)

PCA determines the directions along which the vari-
ability of the data is maximal (Jolliffe, 1986). We ap-
ply PCA separately to the set of variables �θ(t) and �x(t)
in order to identify an underlying uncorrelated repre-
sentation in each dataset. After subtracting the means
from each dimension, we compute the covariance ma-
trices Cx = E(�x�xT ) and Cθ = E(�θ�θT ).

The 3 eigenvectors �vx
i and associated eigenvalues

λx
i of the hand path are given by Cx�vx

i = λx
i �v

x
i ,

∀i∈{1, . . . , 3}. The 4 eigenvectors �vθ
i and associ-

ated eigenvalues λθ
i of the joint angle trajectories

are given by Cθ�vθ
i = λθ

i�v
θ
i , ∀i∈{1, . . . , 4}. We

project the two datasets onto their respective basis
of eigenvectors and obtain the time series �ξx(t) =
{ξx

1 (t), ξx
2 (t), . . . , ξx

Kx(t)} for the hand path, and
�ξθ(t) = {ξθ

1(t), ξθ
2(t), . . . , ξθ

Kθ (t)} for the joint angle
trajectories. Kx and Kθ form, respectively, the mini-
mal number of eigenvectors to obtain a satisfying rep-
resentation of each original dataset, i.e. such that
the projection of the data onto the reduced set of
eigenvectors covers at least 98% of the data’s spread:∑K

i=1 λi > 0.98.

Applying PCA before encoding the data in a HMM has
the following advantages: 1) It helps reducing noise,
as the noise is now encapsulated in the lower dimen-
sions (but it also discards the high-frequency informa-
tion). 2) It reduces the dimensionality of the dataset,
which reduces the number of parameters in the Hidden
Markov Models, and speeds up the training process.
3) It produces a parameterizable representation of the
dataset that offers the required flexibility to general-
ize to different constraints. For example, the 3D path
followed by the demonstrator’s hand, when drawing a
letter of the alphabet, can be reduced to a 2D signal.

3.2. Independent Component Analysis (ICA)

Similarly to PCA, ICA is a linear transformation that
projects the dataset onto a basis that best represents
the statistical distribution of the data. ICA searches
the directions along which statistical dependence of the
data is minimal (Hyvärinen, 1999).

Let �x be a multi-dimensional dataset resulting from a
linear composition of the independent signals �s, given
by: �x = A�s. ICA consists of estimating both the
“sources”, i.e. �s, and the mixing matrix A by maxi-
mizing the non-gaussianity of the independent compo-

nents. Non-gaussianity can be estimated using, among
others, a measure of negentropy.

Here, we use the fixed-point iteration algorithm devel-
oped by (Hyvärinen, 1999). Prior to applying ICA,
we reduce the dimensionality of the dataset following
the PCA decomposition described above and, conse-
quently, apply PCA on the K optimal components.
While with PCA, the components are ordered with re-
spect to their eigenvalues λi, which allows us to easily
map the resulting signals to their corresponding HMM
output variables, ordering the ICA components is un-
fortunately not as straightforward. Indeed, the order
of the components is somewhat random. In order to
resolve this problem, we order the ICA signals accord-
ing to their negentropy1.

3.3. Hidden Markov Model (HMM)

For each gesture, a set of time series { �ξx(t), �ξθ(t)}
is used to train a fully connected continuous Hidden
Markov Model with Kx+Kθ output variables. The
model takes as parameters the set M={�π,A, µ, σ},
representing, respectively, the initial states distrib-
ution, the states transition probabilities, the means
of the output variables, and the standard deviations
of the output variables. For each state, the output
variables are described by multivariate Gaussians, i.e.
p(ξθ

i ) ∼ N (µθ
i , σ

θ
i ) ∀i ∈ {1, . . . , Kθ} and p(ξx

i ) ∼
N (µx

i , σx
i ) ∀i ∈ {1, . . . , Kx} A single Gaussian is as-

sumed to approximate sufficiently each output vari-
able2 (see Figure 2).

The transition probabilities p(q(t)=j|q(t-1)=i) and
the observation distributions p(ξ(t)|q(t)=i) are esti-
mated by the Baum-Welch algorithm, an Expectation-
Maximization algorithm, that maximizes the likeli-
hood that the training dataset can be generated by the
corresponding model. The optimal number of states
in the HMM may not be known beforehand. The
number of states can be selected by using a criterion
that weights the model likelihood (i.e. how well the
model fits the data) with the economy of parameters
(i.e the number of states used to encode the data). In
our system, the Bayesian Information Criterion (BIC)
(Schwarz, 1978) is used to select an optimal number
of states for the model:

BIC = −2 log(L) + np log(T ) (1)

1Note that this does not completely ensure that the
ordering is conserved and a manual checkup is sometimes
required.

2There is no advantage to use a mixture of Gaussians
for our system, since the training is performed with too few
training data to generate an accurate model of distribution
with more than one Gaussian.
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where L = P (D|M) is the likelihood of the model
M , given the observed dataset D, np is the number
of independent parameters in the HMM, and T the
number of observation data used in fitting the model
(in our case T = (Kx+Kθ) ·N , for trajectories of size
N). The first term of the equation is a measure of how
well the model fits the data, while the second term is a
penalty factor that aims at keeping the total number
of parameters low. In our experiments, we compute a
set of candidate HMMs with up to 20 states and retain
the model with the minimum score.

3.4. Recognition Criteria

For each experiment, the dataset is split equally into a
training and a testing set. Once trained, the HMM can
be used to recognize whether a new gesture is similar
to the ones encoded in the model. For each HMM, we
run the forward-algorithm (Rabiner, 1989), an itera-
tive procedure to estimate the likelihood L that the ob-
served data D could have been generated by the model
M , i.e. L = P (D|M). In the remaining of the paper,
we will refer to the log-likelihood value LL = log(L),
a usual means of computing the likelihood. A gesture
is said to belong to a given model when the associ-
ated LL is strictly greater than a given fixed threshold
(LL > −100 in our experiments). In order to compare
the predictions of two concurrent models, we set a min-
imal threshold for the difference across log-likelihoods
of the two models (∆LL > 100 in our experiments).
Thus, for a gesture to be recognized by a given model,
the voting model must be very confident (i.e. gener-
ating a high LL), while other models predictions must
be sufficiently low in comparison.

3.5. Data Reconstruction

Once a gesture has been recognized, the robot imi-
tates the gesture, by producing a similar (generalized
form of) the gesture. The generalized form of the
gesture is reconstructed in 5 steps (see Figure 3): 1)
We first extract the best sequence of states (accord-
ing to the model’s parameters {�π,A, µ, σ}), using the
Viterbi algorithm (Rabiner, 1989). 2) We, then, gener-
ate a time-series of Kx+Kθ variables { �ξ′′′x(t), �ξ′′′θ(t)}
by computing the mean values µ of the Gaussian dis-
tribution of each output variable at each state. 3)
We then reduce this time series to a set of key-points
{ �ξ′′x(t), �ξ′′θ(t)}, in-between each state transitions. 4)
By interpolating between these key-points and normal-
izing in time, we construct the set of output variables
{ �ξ′x(t), �ξ′θ(t)}, using Piecewise cubic Hermite polyno-
mial functions (the benefits of this transformation on
the stability of the system are discussed in Section 5.2).
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Figure 3. Schematic of the retrieval process on a generic
sine curve. The original signal {ξx

1 (t)} (dotted-line) is en-
coded in a HMM with 4 states. A sequence of states and
corresponding output variables {ξx

1
′′′(t)} are retrieved by

the Viterbi algorithm (points). Key-points {ξx
1
′′(t)} are de-

fined from this sequence of output variables (circles). The
retrieved signal {ξx

1
′(t)} (straight-line) is then computed

by interpolating between the key-points and normalizing
in time.

5) Finally, by reprojecting the time series onto the ro-
bot’s workspace (using a rescaling transformation on
the linear map extracted by PCA/ICA), we recompute
the complete hand path �x′(t) and joint angle trajecto-
ries �θ′(t), which is, then, fed to the robot controller.

4. Selection of a controller

In (Billard et al., 2004), we determined a cost func-
tion according to which we can measure the quality of
the robot’s reproduction and drive the selection of a
controller. The controller combines direct and inverse-
kinematics, so as to optimize the cost function. In
other words, the controller balances reproducing ei-
ther the demonstrated hand path or the demonstrated
joint angle trajectories (note that these two constraints
may be mutually exclusive in the robot’s workspace),
according to their relative importance.

The relative importance of each set of variables is in-
versely proportional to its variability. The rational
is that, if the variance of a given variable is high,
i.e. showing no consistency across demonstrations, this
suggests that satisfying some particular constraints on
this variable will have little bearing on the task.

The variance of each set of variables is estimated using
the probability distributions computed by the HMMs
during training. If {q(t)} is the best sequence of states
retrieved by a given model, and {σ(t)} the associated
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Figure 4. In order to relate the variability of the different
signals collected by the robot (given that these come from
modalities that differ in their measurement units and res-
olution), we define a transfer function f(σ) to normalize
and bound each variable, such that f(σ) ∈ [0; 1].

sequence of standard deviations, we define:

α =
{

0 if f(σ̄x) > f(σ̄θ)
1 if f(σ̄x) ≤ f(σ̄θ) (2)

where σ̄x is the mean variation for the hand path and
σ̄θ the mean variation for the joint angles over the
different states (see also Figure 4). α determines the
controller to reproduce the task. α = 0 corresponds
to a direct controller, while α = 1 corresponds to an
inverse-kinematics controller. In the experiments re-
ported here, we determined that α = 0 for the wav-
ing and knocking gesture (i.e. direct controller), and
α = 1 for the other gestures (i.e. inverse kinematics
controller).

5. Stability issues

In this section, we briefly discuss the stability of our
learning system and of our controller. This is, however,
not a formal proof.

5.1. Stability of the learning criterion

Once recognized, a gesture can be used to re-adjust the
model’s parameters, assuming that the gestures used
to train the model are still available. However, a given
model will be readjusted to fit a given gesture iff the
likelihood that the model has produced the gesture is
sufficiently large, i.e. larger than a fixed threshold3,
see Section 3.4. In practice, we found that such crite-
ria insure that a good model will not depreciate over
time. We trained an uncorrupted model continuously,
starting with 0% noise and adding up to 40% noise to
the dataset (after which the recognition performance
would depreciate radically, as shown in Table 1, and
the new gestures would not be used for training). The
results are reported in Figure 8, showing that the orig-
inal model remains little disturbed by the process.

The above constraints, however, do not satisfy com-
pletely the algorithm proposed by (Ng & Kim, 2005)

3The thresholds were set by hand and proved to ensure
sufficiently strong constraint on the stability, while allow-
ing some generalization over the natural variability of the
data.

Table 1. Recognition rates as a function of the spatial
noise: ’test data’ refers to a testing set comprising original
human data corrupted with spacial and temporal noise, see
Figure 5. ’retrieved data’ refers to a testing set comprising
synthetic data, generated by corrupted models.

test data retrieved data
PCA ICA PCA ICA

human data (hd) 100% 100% - -
hd + rs=10% 72.0% 75.3% 80.3% 86.0%
hd + rs=20% 65.0% 73.0% 79.3% 81.0%
hd + rs=30% 54.0% 66.7% 73.7% 82.3%
hd + rs=40% 35.0% 34.7% 73.3% 84.3%
hd + rs=50% 15.3% 13.0% 74.0% 81.3%

to ensure stability of an online learning system. Since
LL is a measure of the variability of the data of or-
der N , where N is the number of states in our sys-
tem, the above two conditions ensure that the com-
plete variability of the sequence is within bound. How-
ever, it does not ensure that each state’s variability is
bounded.

5.2. Stability of the controller

The issue of the stability of the controller is beyond the
scope of this paper. However, in practice and to ful-
fill some basic engineering requirements, we have used
methods that ensure that the system will be bounded
within the robot’s workspace.

The piecewise cubic Hermite polynomial functions,
also referred to as “clamped” cubic spline, used to in-
terpolate the trajectories across the model’s keypoints,
ensures BIBO stability, i.e., under bounded distur-
bances, the original signal remains bounded and does
not diverge (Sun, 1999).

The robot’s motion are controlled by a built-in PID
controller, whose gains have been set so as to provide
a stable controller for a given range of motions. In
order to insure the stability of the Fujitsu controller,
the trajectories are automatically rescaled, shifted or
cut off, if they are out-of-range during control.

6. Results and performance of the
system

We trained the model with a dataset of 4 subjects
performing the 6 different motions shown in Figure
1. After training, the model’s recognition performance
were measured against a test set of 4 other individuals
performing the same 6 motions. Subsequently, once
a gesture had been recognized, we tested the model’s
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capacity to regenerate the encoded gesture, by retriev-
ing the corresponding complete joint angle trajectories
and/or hand path, depending on the decision factor α,
see Section 4. These trajectories were then run on the
robot, as shown in Figure 1.

All motions of the test set were recognized correctly4.
The signals for the letter A, waving, knocking and
drinking gestures were modelled by HMMs with 3
states, while the letter B was modelled with 6 states
and the letter C with 4 states. The key-points for
each gesture corresponded roughly to inflexion points
on the trajectories (i.e. relevant points describing the
motion). The number of states found by the BIC crite-
rion grows with the complexity of the signals we mod-
elled.

We found that 2 PCA or ICA components were suffi-
cient to represent the hand path as well as the joint tra-
jectories for most gestures. We observed that the sig-
nals extracted by PCA and ICA presented many sim-
ilarities. Moreover, as expected, we observed that the
principal and independent components for both joint
angle trajectories and hand paths bear the same quali-
tative characteristics, highlighting the correlations be-
tween the two datasets. Figure 6 shows an example of
resulting trajectories when applying ICA preprocess-
ing.

7. Robustness to noise

In order to evaluate systematically the robustness of
our system to recognizing and regenerating gestures
against temporal and spatial noise, we generated two
new datasets based on the human dataset. The first
dataset, aimed at testing the recognition capabilities
of the system, consisted of the original human data
corrupted with either spatial and temporal noise. The
second dataset, aimed at measuring the reconstruction
capabilities of the system, consisted of synthetic data,
generated by a corrupted model, i.e. a model trained
with the first training of corrupted human data. We
report the results of each set of measures in Table 1.

7.1. Noise generation

Temporal noise was created by generating non-
homogeneous deformations in time on the original sig-
nal (see Figure 5). The signal is discretized into N

4Note that, when reducing the number of components
with PCA, i.e.

�K
i=1 λi > 0.8 instead of

�K
i=1 λi > 0.98,

an error happened for one instance of the knocking on a
door motion, that was confused with the waving goodbye
motion. This is not surprising, since both motions involve
the same type of oscillatory component.
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Figure 5. Noise generation process on a generic sine curve,
with parameters {nt, rt, ns, rs}={10%, 50%, 10%, 50%}.
1st row: Random selection of 10 key-points. 2nd row: Ad-
dition of temporal noise. 3rd row: Random selection of 10
key-points. 4th row: Addition of spatial noise.
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Figure 6. Decomposition and reconstruction of the tra-
jectories resulting from drawing the alphabet let-
ter C. Training data, added with synthetic noise
({nt, rt, ns, rs}={10%, 20%, 10%, 20%}), are represented
in thin lines. Superimposed to those, we show, in lighter
bold lines, the reconstructed trajectories.
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Figure 7. Recognition rates as a function of spatial and
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Figure 8. In bold, trajectory retrieved by a model trained
successively with a dataset containing (from left to right)
rs={10%, 20%, 30%, 40%, 50%} of noise, using PCA de-
composition.

points. The algorithm goes as follows: 1) Select ran-
domly nt · N key-points in the trajectory, with a uni-
form distribution of size N . 2) Displace each key-point
randomly in time following a Gaussian distribution
centered on the key-point with a standard deviation
rtσ̄t. σ̄t is the mean standard deviation of the distribu-
tion of key-points, i.e. σ̄t(N) =

√
1

N−1

∑N
i=1(i − N

2 )2.
3) Reconstruct the noisy signal by interpolating be-
tween the key-points.

Then, spatial noise was created by adding white noise
to the original signal (see also Figure 5). The al-
gorithm goes as follows: 1) Select ns · N key-points
in the trajectory, with a uniform random distribution
of size N . 2) Displace each key-point randomly in
space, with a Gaussian distribution centered on the
key-point, with standard deviation rsσ̄s. σ̄s is the
mean standard deviation in space, i.e. σ̄s=σ̄θ for the
joint angles and σ̄s=σ̄x for the hand path.

7.2. Recognition performance

In order to measure the recognition performance of
our model, we trained a model with an uncorrupted
dataset of human gesture (note that the dataset still
encapsulated the natural variability of human motion),
and tested its recognition rate against a corrupted
dataset. The corrupted dataset was created by adding
spatial and temporal noise to the original human
dataset with nt=10%, rt={10%, 20%, 30%, 40%, 50%}
and ns=100%, rs={10%, 20%, 30%, 40%, 50%}. Com-
parative results for PCA and ICA preprocessing are
presented in Figure 7 and in Table 1. We observed that
the recognition rate clearly decreases with an increase
in spatial noise. It also decreases with an increase in
temporal noise, but less so than for the spatial noise,
in agreement with the known robustness of HMM en-
coding of time series in the face of time distortions.

7.3. Reconstruction performance

The same process was carried out to evaluate the re-
construction performance of the system. We, first,
trained a set of “corrupted models” with a set of hu-
man data corrupted with temporal and spatial noise.
We, then, regenerated a set of signals from each of
the corrupted models (see Figure 8). Finally, we mea-
sured the recognition rate of the good model (trained
with uncorrupted human data) against this set of re-
constructed signals, see Table 1. The recognition per-
formance are better with the regenerated dataset than
with the original corrupted dataset. This is not sur-
prising, since the signals regenerated from corrupted
models are by construction (through the Gaussian es-
timation of the observations distribution) less noisy
than the ones used for training (since they are more
likely to show a variability close to the mean of the
noise distribution).

8. Discussion on the model

Results showed that the combinations PCA-HMM and
ICA-HMM were both very successful at reducing the
dimensionality of the dataset and extracting the prim-
itives of each gesture. For both methods, the recogni-
tion rates and reconstruction performances were very
high. As expected, preprocessing of the data using
PCA and ICA removes well the noise, making the
HMM encoding more robust. A second advantage of
PCA/ICA encoding is that it reduces importantly the
amount of parameters required for encoding the ges-
tures in the HMM in contrast to using raw data as in
(Inamura et al., 2003; Calinon et al., 2005).

The average performance using ICA decomposition
is slightly better to that using PCA. However, ICA
preprocessing is less deterministic than PCA pre-
processing. Indeed, ICA components are computed
iteratively, starting from a random distribution. Thus,
the algorithm does not ensure to find the same com-
ponents at each run. PCA directly orders the com-
ponents with respect to their eigenvalues, while ICA
components are ordered with respect to their negen-
tropy value, which can induce errors. To achieve opti-
mal encoding requires, thus, a manual check-up.

The advantage of encoding the signals in HMMs, in-
stead of using a static clustering technique to recognize
the signals retrieved by PCA/ICA, is that it provides a
better generalization of the data, with an efficient rep-
resentation, robust to distortion in time. An HMM en-
coding accounts for the difference in amplitude across
the signals in the Gaussian distributions associated to
each state. The distortions in time are handled by
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using a probabilistic description of the transitions be-
tween the states, while a simple normalization in time
would not have generalized correctly over demonstra-
tions performed with time distortions.

Finally, a strength of the model lies in that it is general,
in the sense that no information concerning the data is
encapsulated in the preprocessing or in the HMM clas-
sification, which makes no assumption on the form of
the dataset. However, extracting the statistical regu-
larities is not the only mean of identifying the relevant
features in a task. Moreover, such an approach would
not scale up to learning complex tasks, consisting of
sequential presentations of multiple gestures. In fur-
ther work, we will exploit the use of priors in the form
of either explicit segmentation points (e.g. generated
by an external modalities such as speech), or in the
form of a kernel composed of generic signals extracted
by our present work to learn tasks involving sequential
and hierarchical presentations of gestures.

9. Conclusion

This paper presented an implementation of a
PCA/ICA/HMM-based system to encode, generalize,
recognize and reproduce gestures. The model’s ro-
bustness to noise was tested systematically and val-
idated in a real world set-up using a humanoid robot
and kinematics data of human motion. This work is
part of a general framework that aims at improving
the robustness of current methods in robot program-
ming by demonstration, so as to make those suitable
to a wide range of robotic applications. The present
work demonstrates the usefulness of using a stochastic
method to encode the characteristic elements of a ges-
ture and the organization of these elements. Moreover,
such a method generates a representation that ac-
counts for the variability and the discrepancies across
demonstrator and imitator sensory-motor spaces.
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