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Abstract 

In many domains, a Bayesian network’s 
topological structure is not known a priori and 
must be inferred from data. This requires a 
scoring function to measure how well a proposed 
network topology describes a set of data. Many 
commonly used scores such as BD, BDE, 
BDEU, etc., are not well suited for class 
discrimination. Instead, scores such as the class-
conditional likelihood (CCL) should be 
employed. Unfortunately, CCL does not 
decompose and its application to large domains 
is not feasible. We introduce a decomposable 
score, approximate conditional likelihood (ACL) 
that is capable of identifying class discriminative 
structures.  We show that dynamic Bayesian 
networks (DBNs) trained with ACL have 
classification efficacies competitive to those 
trained with CCL on a set of simulated data 
experiments.  We also show that ACL-trained 
DBNs outperform BDE-trained DBNs, Gaussian 
naïve Bayes networks and support vector 
machines within a neuroscience domain too large 
for CCL. 

1.  Introduction     

Our primary contribution is a decomposable Bayesian 
network scoring function that favors class-discriminative 
structures and is computationally tractable for large 
Bayesian networks (BNs). BNs are a graphical modeling 
framework capable of concisely representing a joint 
probability distribution (JPD) by taking advantage of 
independencies among random variables (RVs). They 
have long been used for their powerful inference 
capabilities and their ability to model dependencies 
among RVs. However, in many systems, knowledge of 
which RVs are correlated is not available a priori. The 
structure for BNs used to model these systems must be 
elicited from the data. This requires a scoring function to 
measure how well a proposed topology describes the RV 
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dependencies within the data. Commonly used scoring 
methods such as BD (Cooper & Herskovits 1992), BDE 
(Heckerman, Geiger & Chickering 1995), BDEU 
(Buntine 1991), etc., are not well suited for class-
discriminating since they score proposed structures on 
how likely the structures are given the data. Highly-likely 
structures are not necessarily class-discriminative 
structures. Instead, scoring methods such as the class-
conditional likelihood (CCL) should be employed 
(Grossman & Domingos 2004). 

Unfortunately, the CCL score does not decompose into an 
aggregation of independent scores for separate topological 
sub-structures of the BN, as most other commonly used 
scores do. This significantly increases the amount of 
computation required for structure searches. For instance, 
in the neuroscience domain we are interested in, structure 
search using the BDE score can take several hours 
whereas an equivalent search using CCL could take 
several months. We introduce a scoring function, 
approximate conditional likelihood (ACL), that both 
decomposes and identifies class-discriminating structures. 

We set up a series of simulated data experiments designed 
to mimic qualities present in many domains, including our 
neuroscience domain. Within the data, strong RV 
correlations exist that are not helpful in class-
discrimination. Instead, weaker correlations, whose 
dynamics change between classes, must be preferred. We 
show that BDE performs badly under these conditions.  
We compare the classification efficacies of ACL and CCL 
in three sets of experiments and find that ACL can 
identify more subtle differences among classes, CCL is 
more robust to intra-class noise and the difference in 
accuracies between the two scores remains relatively 
constant as the network sizes increase. 

Our neuroscience problem is too large for CCL. For this 
domain, we compare ACL-trained BNs with a set of 
commonly employed machine learning techniques: BDE-
trained BNs, Gaussian naïve Bayesian networks and 
support vector machines. We find ACL-trained BNs 
outperform these techniques in classification accuracy and 
dominates in an ROC cost-analysis. 

2.  Background 
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2.1  Bayesian networks 

For an introductory overview of Bayesian networks 
(BNs), we refer the reader to the aptly titled “ Bayesian 
Networks without Tears”  (Charniak 1991). For a more 
detailed analysis see (Jensen 2001; Heckerman, Geiger & 
Chickering 1995).  

BNs are directed acyclic graphs (DAGs) that explicitly 
represent independence relationships among RVs. They 
contain nodes for each RV and a link between any two 
statistically correlated nodes. The node originating the 
directed link is a parent and the terminating node a child. 
A child and its set of parents are a family. Each node 
contains a conditional probability table (CPT) that 
describes the relationship between it and its parents. 

If the topology is unknown, i.e., the independence 
relations among RVs is unknown, an appropriate structure 
must be elicited from the data. This process is referred to 
as structure search and is well understood (Heckerman, 
Geiger & Chickering 1995) and known to be NP hard 
(Chickering, Geiger & Heckerman 1994). Structure 
search boils down to proposing as many hypothesis 
structures as possible and measuring the goodness of fit 
between each structure and the data. The method used to 
measure this fit is a structure scoring function.  

As there are generally too many structures to score 
exhaustively, the following heuristic is generally 
employed. Starting with a topology with no links, 
iteratively score all legal modifications to the topology. A 
legal modification is a link addition, removal or reversal 
that does not result in a cycle. Choose the modification 
that resulted in the highest score. Repeat until no 
modifications yield improvements. 

The complexity of this algorithm is polynomial in n, the 
number of nodes, but the degree depends on the score. 
Decomposable scores can be calculated as the aggregation 
of independent family scores, 

Modifying the structure or parameters within a single 
family only affects that family’s score. Thus, after 
modifying the highest scoring family F in the current 
iteration of a structure search, the scores for the other 
families in subsequent iterations remain the same. The 
next search iteration will only have to score new 
modifications for family F. Θ(n2) scores are initially 
computed and an additional Θ(n) scores are computed for 
each iteration. Assuming the number of iterations is 
proportional to the number of nodes, the algorithm 
computes Θ(n) ⋅ Θ(n) + Θ(n2) = Θ(n2) family scores. 

With non-decomposable scores, such as the CCL, 
modifying family F alters the contribution to the score of 
every other family. Subsequent iterations must rescore 
modifications to every family again. In all, Θ(n) ⋅ Θ(n2) + 
Θ(n2) = Θ(n3) scores must be calculated—an increase in 
complexity that renders many domains intractable. 

2.2  Notation 

X represents a set of n fully observable RVs, { X1, X2, … , 
Xn}  with arities r1, r2, …, rn. Y represents the class 
associated with a given observation. A data point consists 
of fully observable RVs and a class RV: d = { X, Y} . Xd 
and Yd refer to the observable RVs and the class of data 
point d, respectively. We assume binary classification 
such that the domain of Y = { 1, 2} . A dataset, D, is a 
collection of m data points, { d1, …, dm} . Dj denotes a 
dataset containing all of (and only) the data points for a 
specific class, i.e., Dj = { d : Yd = j} . 

B denotes a Bayesian network containing nodes for RVs 
{ X, Y} . The parent set for a RV Xi in B is denoted PaB(Xi) 
or just Pa(Xi) if the BN can be inferred. qi is the number 
of possible configurations for the RVs in Pa(Xi). The joint 
probability distribution for BN B is given by, 

ΘB is the set of CPT parameters for BN B. B
iΘ  is the CPT 

for node Xi in BN B, ,
B
i jΘ  is the multinomial PB(Xi | 

Pa(Xi)=j). , ,
B
i j kΘ  is the CPT element PB(Xi = k | Pa(Xi) = j).  

2.3  Dynamic Bayesian Networks 

We are particularly interested in modeling temporal 
processes via the dynamic BN (DBN) representation. For 
an overview of DBNs, we refer the reader to (Murphy 
2002). In the most general case, DBNs include one 
column of RVs for every time step in the system and one 
node in each column for every RV in the system.  For 
most real world problems, such DBNs are intractably 
large. We make the stationary and Markov order 1 
assumptions and assume no isochronal links.  The 
topology for these DBNs is composed of two columns, t 
and t+1.  The nodes in each column do not represent 
absolute time points but instead represent behavior of a 
RV averaged across time. Links are allowed to originate 
in the left column and terminate in the right (skip to 
Figure 2 for an example). 

Notation for temporal systems is slightly modified. Xi
t
 

(shorthand for Xi
t+0) and Xi

t+1 represents the i th RV in 
columns t and t+1, respectively. The set of DBN RVs is 
denoted X0:1={ Xi

t
, Xi

t+1
 : 1 ≤ i ≤ n} . The parameters for 

PB(Xi
t+e = k | Pa(Xi

t+e) = j) are denoted , , ,
B
e i j kΘ , e∈{ 0,1} . Y 

represents the class associated with the entire time series. 

2.4  Multinets 

When using BNs for class discrimination, a single BN 
with a class node is often learned. This is not optimal 
when the topology depends on the class.  A fundamental 
weakness of the BN framework is that the topology 
remains static, i.e., the existence of a link cannot change 
based on the values of RVs.  This complicates structure 
search by introducing redundant parameters and reduces 
the comprehensibility of the resulting structure, Figure 1. 

( ) ( )( )
1

| |
n

i ii
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Instead, separate BNs can be used to model each class, B1 
for class 1 and B2 for class 2. B1 and B2 are referred to as 
multinets.  Dataset Dα is Bα’ s intra-class data and Dβ is 
Bα’s extra-class data, β ≠α∈{ 1,2} . An event , ,i j k

βξ  is 
defined to be the occurrence of a data point d∈Dβ that has 
Xi = k and Pa(Xi) = j. The value , ,i j k

βη  is the count of the 
number of times event , ,i j k

βξ  occurs. 

Work in multinets has been formalized in (Heckerman 
1991) and (Geiger & Heckerman 1996). They have also 
been specifically applied to DBNs in (Bilmes 2000) and 
used in speech processing (Bilmes et al. 2001). 

2.5  Class Conditional Likelihood 

If the goal is classification accuracy, choosing the model 
that maximizes CCL is optimal (Duda & Hart 1973). The 
CCL structure score is, 

For DBNs, Xd is replaced by 0:1
dX . Separating the data 

into one set for each class, D1 and D2, and representing 
the single BN with two multinets, B1 and B2,  

where {1,2} .β α≠ ∈  The sum of probabilities from 
differing multinets in the denominator prevents CCL from 
decomposing. Because of this, there is no known closed 
form solution for computing the parameters that 
maximize CCL. For a given topology, Greiner and Zhou 
(2002) have proposed the ELR algorithm based on 
gradient descent heuristics for computing CCL 
parameters. But for structure search, this would require a 
gradient descent for each proposed structure, which was 
shown to be prohibitively expensive by Grossman and 
Domingos (2004). They suggest using ML parameters 
while scoring with CCL and were capable of classifying 
with higher accuracy than the likelihood-based BD score, 
as well as several other BN methods. 

3.  Approximate Conditional Likelihood 

CCL is not decomposable. As such, it cannot be applied 
to datasets with a large number of RVs. Most likelihood-
based scores are decomposable but do not favor class-
discriminative structures. For discrimination, it is 
important that the score not rank structures based solely 
on how well they improve likelihood. Instead, the score 
should increase as the likelihood with respect to the intra-
class data increases, and decrease as the likelihood with 
respect to the extra-class data increases. Such a score will 
produce networks that discriminate between classes since 
high-scoring structures will be indicative of relationships 
that are strong in one class, but weak in another. One such 
score is the ratio of a multinet’s likelihood given its intra-
class data and its likelihood given its extra-class data, 

PACL(Bα | D) fully represents the contribution to the 
overall score for multinet α. It is similar to the PCCL 
term in Equation (4), except the sums in the denominator 
are now single probabilities. Due to this similarity, we 
refer to this score as approximate conditional likelihood 
(ACL), though, if ACL is considered as an approximation 
to CCL, it is an unbounded one.  

There are consequences for not including the probability 
summations in the denominators of the ACL score. If the 
likelihood of B1 given D1 is high, the 

1
( )B dP X  term in the 

PCCL’ s denominator in Equation (4) would lower the 
PCCL(B2 | D) score. As this term does not exist in the 
ACL score, the PACL(B2 | D) score is not lowered and 
may score the proposed structure too highly. 

Even so, ACL has significant computational advantages 
over CCL. It is decomposable while still favoring 
discriminating structures over high-likelihood ones—a 
feature important to classification. In addition, closed 
form solutions for parameters that maximize ACL exist. 

3.1  ACL Parameters 

Each PACL term can be equivalently written in terms of 
CPT parameters,  

subject to 
� ��

�
��

� � ��

�

�
� �� , α ≠ β. 

The derivative of each PACL term with respect to a single 
parameter can be calculated using Lagrangian multipliers 
(Burge 2005), resulting in the following parameters, 
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Figure 1. A system in which X3 is correlated with X1 xor X2

based on Y. (left) The BN required to model the system. The 
CPT contains Θ(r4) parameters where r is the arity of the 
nodes. (right) The pair of multinets required to represent the 
system. The CPTs contain only Θ(r3) parameters. 
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where ω is a normalizing term and ε is a Laplacian 
smoothing constant. Using these parameters increases the 
probability mass in a multinet’s CPT parameters for 
events occurring frequently in the intra-class data, but 
infrequently the extra-class data. It also reduces 
probability mass in parameters to ε for events that occur 
more frequently in the extra-class data. However, unlike 
CCL, maximizing ACL’s parameters will not necessarily 
result in a classification accuracy increase.  

While setting parameters with Equation (7) increases the 
ACL score, it also results in assigning equal probability to 
all events that are more frequent in the extra-class data. 
However, it could be that for two such events, one is far 
less common than the other. This information is restored 
in the following parameter setting (Burge 2005), 

The resulting CPT’s multinomials will only have a single 
parameter set to ε, corresponding to the event that occurs 
most disproportionately often in the extra-class data. 

ACL-ML refers to training with maximum likelihood 
parameters, ACL-Max refers to training with the 
parameters given in Equation (7) and ACL-Mid refers to 
training with parameters given in Equation (8). 

3.2  Classification 

After DBNs have been learned for each class, a cost 
function ratio can be used to classify data points, 

( ) ( )( )1 2 1 3 21 | | 0
,

2

d t t

d

Y if c c B d c B d

Y otherwise

� = + ⋅ + ⋅ >�
�

=��

� �
 

where dt is the testing data point, �  is the likelihood 
function, Yd is the class assigned to the data point and c1, 
c2 and c3 are the parameters for the classification 
boundary in likelihood-space. For BDE and CCL, these 
parameters are set to c1 = 0, c2 = 1, c3 = -1. For ACL, they 
must be learned. We used values that minimize the 
squared error (MSE) between the classification boundary 
and the training data points. To ensure that ACL did not 
gain an unfair advantage by having MSE classification 
boundary parameters, we tested both BDE and CCL with 
MSE parameters and found no improvement in 
classification accuracy. 

3.3  Multiple Class Classification 

In this paper, we limit ourselves to binary classification, 
though a brief discussion on multiple class classification 
is warranted.  The most straightforward approach—
including additional summation terms in the PACL 
denominators for the extra classes’  data—is problematic 
and renders ACL non-decomposable.   

Instead, ACL generalizes to the one-versus-many 
classification paradigm in which each class’s extra-class 
data is the composition of data for all other classes, i.e., 

the extra class data for class /z Z zDαα ∈= � , where Z is the 
set of all classes.  Just as before, a single DBN would be 
learned for each class. This results in DBNs that 
discriminate between a class α and a class γ which 
represents the composition of all other classes.   

Classification would then consist of multiple cost function 
ratio tests, one for each class.  In each test, B2 would 
represent the composite class γ.  Each ratio test would 
indicate whether a data point should be classified as class 
α or as the composite class not including α.  It is possible 
that more than a single ratio test would classify a data 
point as the non-composite class, i.e., more than a single 
ratio test would result in Yd = 1.  This ambiguity could be 
resolved in several ways, e.g., by using the cost function 
ratio with the largest positive value to classify the point. 

4.  Experiments 

4.1  Neuroscience Domain 

Functional magnetic resonance imaging (fMRI) has 
become widely used in the study and diagnosis of mental 
illness. It is a non-invasive technique measuring the 
activity of small cubic regions of brain tissue (voxels). 
Psychologists frequently use fMRI data to test hypotheses 
about changing neural activity caused by mental illness. 

An fMRI scanning session can result in hundreds of 3D 
images, each consisting of 65,000 or more voxels. As 
there is too much data collected to analyze directly, we 
abstract from the voxel level to a region of interest (ROI) 
level. To do this, we use the Talairach database 
(Lancaster et al. 2000) since it is widely accepted in the 
neuroscience community.  Each 3D image is converted 
into an activity snapshot detailing the momentary 
activation of 150 ROIs. A detailed time series is built 
from the snapshots that accounts for the activity of each 
ROI. Each ROI is treated as a temporal RV, and the 
system is modeled with a stationary Markov order 1 DBN 
containing the nodes X0:1={ Xi

t, Xi
t+1 : 1 ≤ i ≤ 150} .  

We analyze data collected by Buckner et al. (2000) in an 
experiment theorized to elicit different neural responses 
from healthy and demented elderly patients. In the 
original analysis, Buckner et al. found little difference 
between the two groups using a general linear model. 
Using BDE-trained DBNs, Burge et al. (2004) found 
significant differences between groups not identified in 
the original study. In Section 5.2, we compare the 
classification efficacy and ROC cost-analysis of BDE-
trained BNs, ACL-trained BNs, Gaussian naïve Bayesian 
networks and support vector machines. 

4.2  Simulated Data 

The large number of variables in the fMRI domain 
prohibits learning with CCL. Thus, a comparison of the 
classification accuracies between ACL and CCL cannot 
be performed. Instead, we compare ACL and CCL’s 

� � � �� � � � � � � � � �

�
��� �� � � � � � � � � � � � � � � �

� � � � �� � � � �
�
� �� � � 	 � 	
 �� 
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classification efficacy on a set of simulated data 
experiments designed to capture qualities inherent in the 
fMRI domain (as well as other domains). 

Two generative DBNs, G1 and G2, are constructed, one 
for each class of data. The relations among RVs in the 
generative DBNs can vary in strength. The dynamics of a 
correlation between a parent and child can change across 
classes without requiring changes to the dynamics 
between that same child and its other parents. Changes 
such as these are present in the fMRI domain. E.g., strong 
correlations between ROIs A and C may not differ, but 
weak correlations between ROIs B and C may. 

Figure 2 illustrates the DBNs used to generate the 
simulated data. The number above each link indicates the 
strength of the correlation as a normalized mutual 
information score (NMIS). The higher the score, the 
stronger the correlation. The only difference between G1 
and G2 is the NMIS for link 1

3 4
t tX X +→  is 0.22 in G1 and 

0.05 in G2. This indicates that 
1

1
4 3( | )t t

GP X X+ ≠  

2

1
4 3( | )t t

GP X X+ . All other links with equal NMIS’s 
indicate that the relationships between parent and child do 
not change across classes. While the CPT 1

4( |tP X +  
2 3, )t tX X  changes between the G1 and G2 classes, the 

marginalized CPT, 1
4 2( | )t tP X X+  does not. 

If a non-discriminative score, such as BDE, was used to 
classify data generated from G1 and G2, the highest 
scoring parent for node 1

4
tX +

 would be 2
tX  since the 

NMIS for 2
tX → 1

4
tX +  is 0.3 and only 0.22 for 3

tX → 1
4
tX + .  

Thus, DBNs trained using BDE would include the non-
discriminating 2

tX → 1
4
tX +  link and would be ineffective 

in class discrimination. The 3
tX → 1

4
tX +  link should be 

favored, even though it corresponds to a weaker 
correlation. Unlike BDE, both CCL and ACL will identify 
the correct discriminating link. 

The exact method for generating a CPT for node t e
iX +  

that conforms to a set of NMIS’s is outside the scope of 
this paper. We will refer to it as the distribution ,( |B

e iP Θ  
, )B

e iS , where e = { 0,1} ,  ,
B
e iΘ  is the set of CPT parameters 

for node t e
iX +  in DBN B and ,

B
e iS  = { , ,1

B
e is , …, , ,

B
e i ps }  is a 

list of NMIS’s, one NMIS for each of the p parents of 
t e
iX + . E.g., 1

1,4
GS  in Figure 2 = { .3 .22} . A given ,

B
e iΘ  can 

also be modified to produce a new CPT, ,
B

e i
′Θ , compliant 

with a different list of NMIS’s, ,
B

e iS′ . This generator is 
referred to as the distribution , , ,( | , )B B B

e i e i e iP S′ ′Θ Θ . The 
closer ,

B
e iS′  is to ,

B
e iS , the smaller the Kullback-Leibler 

(KL) divergence between multinomials in ,
B

e i
′Θ  and ,

B
e iΘ  

will be. If ,
B

e iS′  = ,
B
e iS , then ,

B
e i
′Θ = ,

B
e iΘ . 

4.2.1  DIMINISHING INTER-CLASS DIFFERENCES 

The first simulated data experiment measures the ability 
for each score to identify decreasing magnitudes of 
discriminating behavior. This is an important feature 
within many domains, as class-discriminating behaviors 
need not be profound.  

The CPTs in G1 are drawn from their generators given the 
NMIS scores listed in Figure 2. G2 is constructed as a 
copy of G1, except the 3

tX → 1
4
tX +  NMIS is changed to 

0.22 – c, 0 ≤ c ≤ 0.22, and the CPT for 1
4
tX +  is drawn 

from P( 2
1,4
GΘ | 1

1,4
GΘ , { 0.3 (0.22 – c)} ). Since the NMIS for 

the 2
tX → 1

4
tX +  link does not change across classes, the 

marginal CPT P( 1
4
tX + | 2

tX ) also does not change. For 
classification to be successful, the scoring function must 
score the 3

tX → 1
4
tX +  link higher than other candidate 

links—including the more strongly correlated 2
tX → 1

4
tX +  

link. As c increases, the KL divergence between G1’ s and 
G2’s 

1
4
tX +  CPT also increases, simplifying classification. 

At c = 0 classification is impossible. 

4.2.2  INCREASING INTRA-CLASS DIFFERENCES 

The second set of experiments is designed to measure a 
score’s tolerance to intra-class noise. Like the first set of 
experiments, this set is designed to mimic traits in the 
fMRI domain. A demented patient’s neural activity may 
fundamentally differ from that of healthy patients, but it 
will also differ among other demented patients. This 
characteristic is manifested in other domains. Take an 
example from automated speech recognition. There may 
be distinct differences in how bat and vat are pronounced, 
but not everyone pronounces bat the same either. 
Successfully classifying the utterance of bat or vat 
requires identification of the differences discriminating 
the two words, not the differences that exist among 
separate utterances of the same word. 

For this set of simulated data, G1 and G2 are treated as 
each class’s base-line model. Each data point is generated 
from a modified version of the base line models. Both G1 
and G2 are generated as they were in the first experiment 
with c = 0.17 (the classification accuracy for both scoring 
methods was 100% at this value of c). The model for class 
α’ s gth generated data point, gGα , starts as a copy of Gα. ρ 
random ,j k< >  tuples are chosen, 0 ≤ ρ ≤ 300, and 0.1 is 
added to 1,4, ,

gG
j k

αΘ . When ρ = 0, there is no intra-class 
noise. As ρ increases, intra-class differences increase and 
discrimination is more difficult. 

4.2.3  INCREASING NETWORK SIZE 

X1
t 

X2
t 

X3
t 

X4
t 

X1
t+1 

X2
t+1 

X3
t+1 

X4
t+1 

.1 

.1 

.3 

.22 

X1
t 

X2
t 

X3
t 

X4
t 

X1
t+1 

X2
t+1 

X3
t+1 

X4
t+1 

.1 

.1 

.3 

.05 

G1 G2 

Figure 2. Topology for the two generative DBNs, G1 and G2. 
The number above each link indicates the correlational 
strength between the nodes. Higher numbers indicate stronger 
correlations. The only class-discriminating link is X3

t→X4
t+1. 



 
Learning Class Discriminative Bayesian Networks 

 

This experiment is designed to test how increasing the 
size of the generative networks changes CCL and ACL’s 
relative accuracies.  Simulated data is drawn from 
randomly generated DBNs with n nodes in each of the t 
and t+1 columns, 4 ≤ n ≤ 40.  Each node in the t+1 
column was randomly assigned two parents in the t 
column with NMISs of 0.1 and 0.05.  A single node is 
randomly chosen as the class discriminating node.  In 
class 1’s generative DBN, the NMIS’s for the 
discriminating node’s parents are set to 0.3 and 0.22.  In 
class 2’s DBN, they are set to 0.3 and 0.05 (as was done 
in Figure 2).  Intra-class noise (Section 4.2.2) was added 
to the generated data.  Based on the results of the previous 
two experiments, CCL’s accuracy with these settings 
should be slightly higher than ACL’s.   

5.  Results  / Discussion 

5.1  Simulated Data 

All simulated data experiments consist of the following 
procedure. CPTs are first drawn for G1 and G2. Five 
training data points, each containing a series of 500 time 
points, are then drawn for each class. A structure search is 
performed to locate two new BNs, L1 and L2, using the 
generated data points as training data and one of the 
following scores: ACL-ML, ACL-Mid, ACL-Max, BDE 
or CCL. The structure search finds the single highest 
scoring parent for each 1t

iX +  node.  

Only a single parent is allowed because every score will 
select the discriminating link as either the first or second 
link for node 1

4
tX + . By allowing a single link, we test 

whether a score favors discriminating links over non-
discriminating links.  Further, only a single link is needed 
for class discrimination. 

Five testing data points are then generated for each class 
and classified via a cost function ratio test between L1 and 
L2.  Each experiment is run multiple times to determine 
the average classification accuracy for a fixed c or ρ. The 
t test for two dependent samples (Sheskin 2003) was 
applied for each experiment (p = 0.05) to determine if the 

observed accuracy averages differed significantly.  95% 
confidence intervals can be computed from the t test, but 
due to the large number of experiments,  these intervals 
are small and have been omitted from Figures 3, 4 and 5 
for clarity.  In their place, gray regions indicate ranges 
where the difference between ACL and CCL’s accuracy 
was statistically significant. 

5.1.1  DIMINISHING INTER-CLASS DIFFERENCES 

Figure 3 illustrates the results of the first set of simulated 
data experiments. Each point is the average of 100 runs.  
As expected, BDE-trained DBNs favored the 2

tX → 1
4
tX +  

link due to its higher NMIS, and could not classify the 
data. This highlights the need for a discriminative score 
when high-likelihood structural similarities exist between 
classes. ACL-Max was insignificantly different from 
ACL-Mid, and has been omitted from the results. 

CCL classified perfectly when c ≥ 0.13, below which its 
ability to recognize differentiating behavior between the 
two classes began to falter. At c ≈ 0.11, CCL began 
scoring the 3

tX → 1
4
tX +  link the same as the other non-

discriminating links, and its accuracy began falling 
dramatically. By c ≈ 0.08 CCL’s classification accuracy 
became statistically indistinguishable from guessing. 

On the other hand, ACL-ML was able to maintain perfect 
classification when c ≥ 0.114 and was able to classify 
with better than 50% accuracy all the way down to c = 
0.01.  ACL-ML continued scoring the 3

tX → 1
4
tX +  link 

higher than the other links far longer than CCL. However, 
using the ACL-Mid parameters resulted in a significant 
drop in accuracy. The difference between the score for the 

3
tX → 1

4
tX +

 link and the scores for non-discriminating 
links using ACL-Mid was lower than the difference when 
using ACL-ML.  This likely accounts for ACL-Mid’s 
lower accuracy. However, regardless of the parameters 
chosen, ACL was clearly capable of discerning more 
subtle differences between classes than CCL was.  

5.1.2  INCREASING INTRA-CLASS DIFFERENCES 

Figure 4 illustrates the results of adding intra-class noise.  
Each point is the average of 100 runs.  In the presence of 
increasing differences among data points in the same 
class, CCL performed significantly better than ACL. As 
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Figure 4. The scores’  tolerance to intra-class noise. Gray areas 
indicate ranges where CCL’s accuracy is significantly higher 
than ACL-Mid’s (p = 0.05). 
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Figure 3. The scores’  ability to recognize changes of 
diminishing magnitudes. As c increases, the magnitude of 
difference between the classes increase, simplifying 
classification.  Gray areas indicate ranges where ACL’s 
accuracy is significantly higher than CCL’s (p = 0.05). 
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soon as ρ > 0, the accuracy of CCL and ACL-Mid was 
significantly higher than that of ACL-ML. At ρ = 80, 
CCL’s accuracy became significantly higher than ACL-
Mid’s, and remained higher for most subsequent ρ.  
Again, BDE was incapable of accurate classification. 

ACL-Mid had a significantly higher accuracy than ACL-
ML. This is because choosing parameters that increase the 
ACL score had the effect of increasing the average 
distance of a data point to the classification boundary in 
likelihood space. Thus, intra-class noise was less likely to 
cause a data point to cross the classification boundary and 
be misclassified.  

5.1.3  INCREASING NETWORK SIZE 

Figure 5 illustrates the accuracy differences between ACL 
and CCL as the network size increases.  Each point is the 
average of 150 runs.  As expected, CCL’s performance 
was slightly higher than ACL-Mid’s.  However, as the 
size of the networks grew, the difference between CCL’s 
and ACL-Mid’s accuracy remained essentially constant.  
This indicates that as the size of the simulated networks 
increases, ACL remains competitive with CCL. 

However, ACL-ML’s accuracy dropped dramatically as 
the network size increased.  In Section 5.1.2, ACL-ML 
was shown to handle intra-class noise worse than ACL-
Mid and CCL.  We conclude that the increasing amounts 
of noise in this experiment, in the form of non-
discriminating links, paired with ACL-ML’s inability to 
deal with intra-class noise, accounts for its decreased 
accuracy.  Additional experiments (not shown due to 
space limitations) without intra-class noise have shown 
that ACL-ML’s accuracy does not always drop off as 
network size increases. 

Figure 6 shows the running time of ACL versus CCL.  As 
expected, CCL requires significantly more time than 
ACL.  E.g., for 40-dimensional data, CCL is over 60 
times slower than ACL. 

5.2  Neuroscience fMRI domain 

The DBNs used to model the fMRI domain contained 150 
nodes in the t+1 column, each of which were allowed to 

have a small number of parents, p. This domain is 
significantly too large to use CCL. We compare the 
classification efficacy of ACL-trained DBNs with BDE-
trained DBNs, a Gaussian naïve Bayesian network 
(GNBN) and a support vector machine (SVM) with a 
linear kernel. Gaussian and quadratic kernels were also 
employed, but resulted in lower accuracies and their 
results have been omitted. 

Each Xi
t+1

 node’s optimal parent set was found 
independently from the other nodes using the following 
greedy algorithm. The node is initially set to have no 
parents. Each Xi

t node is then individually added as a 
parent, scored, and removed. The Xi

t node with the 
highest score is then permanently added as a parent. This 
process is repeated until the node has p parents, or no new 
parent improves the score. Not all families will be helpful 
for classification, so only the top κ families with the 
highest scores are used. All accuracies are computed via 
leave one out cross-validation and p and κ are found 
empirically. 

The leaders in classification accuracy were ACL-ML and 
ACL-Mid, achieving an 80% accuracy. BDE and the 
GNBN achieved 73% accuracy and were the best 
classifiers reported by Burge et al. The least accurate 
classifiers were ACL-Max and the SVM, achieving only 
70% and 65% accuracies, respectively. As can be seen in 
the ROC curves given in Figures 7 and 8, ACL-ML 
virtually dominated all other classification methods in a 
cost-analysis, only beaten by ACL-Mid in a narrow range. 

6.  Conclusions 

Commonly used BN scoring functions such as BDE are 
inadequate for purposes of class discrimination. One 
alternative is to use CCL as a scoring function. However, 
the application of CCL is limited by its non-
decomposable nature to small or mid-sized BNs. We 
introduced the approximate conditional likelihood (ACL) 
score capable of identifying discriminating structures 
while remaining decomposable. 

We compared the classification efficacy of DBNs trained 
with CCL and ACL on a class of simulated data that is 
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Figure 5. The scores’  tolerance to increasing network size.  
Each point is the average accuracy of 150 runs.  Gray areas 
indicate ranges where CCL’s accuracy was significantly 
higher than ACL-Mid’s (p = 0.05).   

Figure 6.  Semi-logarithmic graph of the running times for 
structure search with an increasing number of nodes.  Choice 
of ACL parameters does not dramatically alter running times.   
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difficult for non-discriminative scores, such as BDE, to 
classify. While there was no dominance of one score over 
the other in all the simulated data tests, CCL was found to 
be more tolerant to intra-class noise whereas ACL was 
capable of identifying more subtle differences between 
classes.  Further, as the network sizes increased, the 
difference in accuracies between ACL and CCL remained 
essentially constant. 

We applied ACL to the neuroscience problem of 
classifying elderly patients as either healthy or demented 
based on functional magnetic resonance imaging data. 
The DBNs used to model this domain are significantly too 
large for the application of CCL, so we compared ACL’s 
classification accuracies with a host of other commonly 
used machine learning methods: BDE-trained DBNs, 
Gaussian naïve Bayesian networks and support vector 
machines with linear, quadratic and Gaussian kernels. The 
ACL score effectively identified discriminating structures 
and achieved the highest observed classification accuracy. 
Further, from a cost-analysis point of view, the ACL 
virtually dominated every other algorithm. 

Future work involves identifying better methods for 
training ACL’s parameters, as our results showed that 
ACL-ML and ACL-Mid performed well in different 
situations.  Specifically, we are investigating parameters 
that maximize the classification margin in likelihood 
space.  We also plan on applying ACL to non-dynamic 
BNs as there is no fundamental limitation preventing this. 
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Figure 7. ROC curve comparing the cost-analysis for ACL-
ML and ACL-Mid trained BNs, and BDE-trained BNs. A true 
positive is the correct classification of a demented patient, a 
false positive is the incorrect classification of a healthy patient 
as demented. ACL-ML dominates through most of the plot. 
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Figure 8. ROC cost-analysis for ACL-ML BNs, the Gaussian 
naïve Bayesian network and the support vector machine. A 
true positive is the correct classification of a demented patient, 
a false positive is the incorrect classification of a healthy 
patient as demented. ACL-ML dominates. 


