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Abstract
Clustering aims to find useful hidden structures
in data. In this paper we present a new cluster-
ing algorithm that builds upon the consistency
method (Zhou, et.al., 2003), a semi-supervised
learning technique with the property of learning
very smooth functions with respect to the intrin-
sic structure revealed by the data. Other meth-
ods, e.g. Spectral Clustering, obtain good results
on data that reveals such a structure. However,
unlike Spectral Clustering, our algorithm effec-
tively detects both global and within-class out-
liers, and the most representative examples in
each class. Furthermore, we specify an optimiza-
tion framework that estimates all learning param-
eters, including the number of clusters, directly
from data. Finally, we show that the learned
cluster-models can be used to add previously un-
seen points to clusters without re-learning the
original cluster model. Encouraging experimen-
tal results are obtained on a number of real world
problems.

1. Introduction

Clustering aims to find hidden structure in a dataset and is
an important topic in machine learning and pattern recog-
nition. The problem of finding clusters that have a compact
shape has been widely studied in literature. One of the most
widely used approaches is the K-Means [1] method for vec-
torial data. Despite the success these methods have with
real life data, they fail to handle data that exposes a man-
ifold structure, i.e. data that is not shaped in the form of
point clouds, but forms paths through a high-dimensional
space. Recently, Spectral Clustering [2, 3] has attracted a
lot of attention for its ability to handle this type of data very
well.

Although Spectral Clustering algorithms have achieved
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some success in modeling data that lies on manifolds,
there remain a number of open research questions. Perhaps
the most important of these is using data to estimate
the number of clusters and the distance metrics used in
each cluster. In general, these learning parameters are set
manually, making spectral clustering difficult to use in
practice. Recently, an automated way of choosing these
learning parameters was proposed in [4]. However, this
algorithm has two main disadvantages: First, there is no
framework for assigning points outside of the training set
to clusters; second, although the algorithm works well on
synthetic data, as demonstrated in Section 3, it has limited
success on real world data.

In this paper, we present a new clustering algorithm based
on the consistency method, a semi-supervised learning
technique [5] that has demonstrated impressive perfor-
mance on complex manifold structures. The idea in semi-
supervised learning (or transduction) is to use both labeled
and unlabeled data to obtain classification models. This
paper extends this algorithm to unsupervised learning by
finding a minimal subset of points that are suitable for the
consistency method to use as seeds for clusters. The prop-
erty we exploit to identify this subset of points is based on a
similarity metric we propose. Specifically, our framework
considers two points to be identical if they both have iden-
tical distance, on the manifold, to all other points. This
naturally leads to an optimization framework for estimat-
ing learning parameters. Therefore, as with the algorithm
proposed in [4], one of the goals of this paper is to directly
estimate, from the data, both the number of clusters, and
the similarity metrics used to identify them. However, un-
like [4], the algorithm proposed here tends to do well on
real world data, and can be used to cluster points that are
not used during learning.

The similarity metric described above produces a number
of properties that differentiate the manifold clustering al-
gorithm proposed in this paper from Spectral Clustering.
Specifically:

1. The algorithm directly identifies points that are most
representative of each cluster.
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2. The algorithm directly identifies points that are out-
liers from all other points.

3. The algorithm directly identifies points that are out-
liers within each cluster.

These properties can lead to significant improvements in
the model quality and give additional insights into the data.
As demonstrated in Section 3, Spectral Clustering does not
have these characteristics.

The theoretical formulation for the proposed clustering al-
gorithm is given in Section 2: Section 2.2 describes our
point ranking similarity metric, and shows how outliers
(both global and within clusters) are identified, and how
cluster representatives are chosen; Section 2.3 describes
the algorithm used to find the points that are used to seed
clusters; Section 2.4 defines the optimization function used
to estimate the cluster learning parameters from data; and,
Section 2.5 defines the algorithm used to cluster data not
used during learning. Section 3 presents detailed experi-
mental results on both synthetic and real data. Section 4
concludes with future work. An extension of this work to
the robotics domain can be found in [6].

Matlab code implementing the proposed clustering algo-
rithm is available for download from the authors home-
pages.

2. Algorithm

2.1. Semi-Supervised Learning

In [5] Zhou et.al. introduced the consistency method, a
semi-supervised learning technique, which is the basis of
the clustering algorithm proposed in this paper. Below is a
brief summary of this semi-supervised algorithm.

Assume a set of n training examples x1, ..., xn, with each
training example xi ∈ <

m. Assume also a set of la-
bels L = {1, · · · , c}, where each point belongs to only
one label. In a semi-supervised learning framework, the
first l points (1 · · · l) are labeled and the remaining points
(l + 1 · · ·n) unlabeled. Define Y ∈ N n×c with Yij = 1
if point xi has label j and 0 otherwise. Let F ⊂ Rn×c

denote all the matrices with nonnegative entries. A matrix
F = [FT

1 , · · · , FT
n ] ∈ F is a matrix that labels all points xi

with a label yi = arg maxj≤c Fij . Finally, define the series
F (t+1) = αSF (t)+(1−α)Y with F (0) = Y, α ∈ (0, 1).
The entire algorithm is defined as follows:

1. Form the affinity matrix Wij = exp(−‖xi −
xj‖

2/(2σ2)) if i 6= j and 0 otherwise.

2. Compute S = D−1/2WD−1/2 with Dii =
∑n

j=1
Wij and Dij = 0, i 6= j.

3. Compute the limit of series limt→∞ F (t) = F ∗ =
(I−αS)−1Y . Label each point xi as arg maxj≤c F ∗

ij .

The regularization framework for this method is as follows.
The cost function associated with the matrix F with regu-
larization parameter µ > 0 is defined as

Q(F ) =
1

2
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The first term is the smoothness constraint that associates a
cost with change between nearby points. The second term,
weighted by µ, is the fitting constraint that associates a cost
for change from the initial assignments. The classifying
function is defined as F ∗ = arg minF∈F Q(F ). Differen-
tiating Q(F ) one obtains F ∗ − 1

1+µSF ∗ − µ
1+µY . Define

α = 1

1+µ and β = µ
1+µ (note that α+β = 1 and the matrix

(I − αS) is non-singular) one can obtain

F ∗ = β (I − αS)
−1

Y (2)

For a more in depth discussion about the regularization
framework and on how to obtain the closed form expres-
sion F ∗ see [5].

2.2. Clustering

Let us assume for the moment that the parameters σ, α and
the number of clusters c are known. We further assume that
each cluster exposes a manifold structure without holes,
i.e. finding one labeled point per class for the consistency
method will allow us to find all the remaining points of that
class. From equation (2), it is evident that the solution to
the semi-supervised learning problem only depends on the
labels after the the matrix (I − αS) has been inverted. To
turn the consistency method into a clustering algorithm it
suffices to determine which columns of F we need to se-
lect, i.e. we need to find the centroid points that are the
center of each class, and then assign each point to the class
using the classifying function: yi = arg maxj≤c Fij . We
define a matrix U as:

U = β (I − αS)
−1

=
[

uT
1 , ..., uT

n

]

(3)

and note that U defines a graph or diffusion kernel as de-
scribed in [7, 8]. The entries in the columns of U (we sym-
bolize column i of matrix U by the column vector uT

i ) con-
tain the “activation” of all the points in the data set if point
i were used for labeling. That means that Uii is the largest
number in column i, and the remaining values in Ui get
smaller the further the points are away from the centroid,
but according to the underlying intrinsic structure. In [9]
these values were used to rank with respect to the intrinsic
manifold structure, i.e. the activation was used as similar-
ity measure between the points. The ordering of these dis-
tances along each manifold is maintained independent of
scaling. Therefore, without loss of ranking, we can derive
a normalized form of U , called V , as follows:

V =
[

uT
1

∥

∥uT
1

∥

∥

−1
, ..., uT

n

∥

∥uT
1

∥

∥

−1
]

=
[

vT
1 , ..., vT

n

]

(4)
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Note that, by definition, ||vi|| = 1.

The normalized matrix V allows us to define a rank based
similarity metric between any points xi and xj as follows:

dM (xi, xj) = 1− viv
T
j (5)

The intuition behind this distance measure is that two
points on a manifold are identical, iff the order of distances
between all other points in the training set are identical, and
the relative distances are identical - under these conditions,
viv

T
j = 1 and dM (xi, xj) = 0. Conversely, if the point xi

has completely different distances along U to other points
in the training data as does point xj , then dM (xi, xj) = 1,
because viv

T
j = 0. For notational convenience, we fur-

ther define the matrix DM whose entries are defined as
DMij

= dM (xi, xj).

Given the definition of similarity in equation (5) between
any two points xi and xj , our formulation of clustering is
as follows. In clustering, we want to pick clusters of points
that are most similar to one another, while at the same time
most different from points in other clusters. In order to for-
malize this, we first define the concept of an outlier within
our framework first. We define a cluster independent out-
lier point to be one that is, on average, furthest away to all
other points. This can be directly calculated by taking the
average of the columns of DM (the elements of which are
DMij

= dM (xi, xj) as defined in equation 5) and defining
an outlier vector (cluster independent) Od as follows:

Od =
1

n

[

∑

DT
M1, ...,

∑

DT
Mn

]

= [Od1, ..., Odn] (6)

where the element Odi
is the average distance (on the man-

ifold) between point xi and all the other points, and, by
definition DM =

[

DT
M1

, ..., DT
Mn

]

. Thus by ordering the
vales of Od in decreasing order, we order the points from
furthest to closest, and the points appearing first in the list
constitute the outliers.

Similarly, assume that pj = (p1j , ..., pKj) is a vector of
K indices, where pk1j 6= pk2j , and pkj ∈ {1, ..., n}, that
defines the K training examples that are part of cluster j.
This allows us to define outliers within a cluster j by look-
ing at the sub-matrix Djj

M = DM (pj ,pj). Specifically, we
obtain an outlier vector Oj

d for cluster j as follows:

Oj
d =

1

n

[

∑

DjjT
M1

, ...,
∑

DjjT
Mn

]

=
[

Oj
d1

, ..., Oj
dn

]

(7)

where Oj
di is the mean distance of xj to all other points in

its cluster. Thus the point which has maximum Oj
di is the

one which is most inside the cluster, while the point that
has minimum Oj

di is most outside of the cluster.

As outlined below, Equations 6 and 7 constitute the basis
for the clustering algorithm proposed in this paper.

2.3. Finding Points That Seed a Cluster

In algorithm 1 we specify our heuristic for identifying the
centroid points we use to assign all the data points to a
class. Let the points xl1 , ..., xlc specify the centroid point
for each cluster. The algorithm works by first assigning xl1

to the point that is closest to all other points, which is the
point that has the largest value Odi

. This is illustrated in
figure 1 (a) which shows the mean distance for Od on the
USPS data set (see section 3.2). Note how in each step
only one of the clusters has higher values than all the other
clusters.

To find xl2 , we multiply each element of Od by the cor-
responding element in the column vector DT

Ml1
, to obtain

an new, re-weighted vector Od. Re-weighting is done us-
ing the component-wise vector multiplication (.∗ in Mat-
lab). Let On

d denote the nth re-weighting of the Od vector.
Re-weighting the vector gives all the points that were sim-
ilar xli a small value (with our similarity measure) and all
the points that were different a large value. The mean dis-
tance after the first re-weighting is illustrated in figure 1
(b). Again we choose the point that is most similar to all
the other points, which is the point that has the largest value
On

d . This procedure of re-weighting and finding the most
similar point continues until c points have been found.

Algorithm 1 Find centroid-points. Input: Matrix V , num-
ber of clusters C Output: indices of the clusters l1 · · · lc

1: n← 1, compute O1
d = Od and DM from V .

2: l1 ← index of the example with maximum of O1
d.

3: wt← (1−DMl1
)

4: for 2 ≤ n ≤ C do
5: ln ← index of the example with maximum of On

d .
6: wt← (1−DMln

). ∗ wt
7: On+1

d ← wt. ∗On
d .

8: end for
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Figure 1. O
n
d in each step of finding centroid points: In each

step the mean distances change as the O
n
d vector is re-weighted.

2.4. Model Selection For Clustering

Given the above definitions, we now state the optimization
framework for estimating the clustering parameters σ, α
and c from learning data x1, ..., xn. let pj be the set of
points that belong to cluster j (as defined in Section 2.2).
Using matrix DM we can define the mean distance between
points in cluster j as:

D
jj

M = E [DM (pj ,pj)]
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where DM (pj ,pj) denotes all entries of DM correspond-
ing to columns and rows of points pj , and E[·] is the av-
erage value of these. Similarly, the mean distance between
points in cluster j and points in cluster k is given by:

D
jk

M = E [DM (pj ,pk)]

Given that our goal is to find clusters that maximize the
distances between points in different clusters, while min-
imizing the distances between points in the same cluster,
we can now state the optimization problem we are solv-
ing. Specifically, we want to find σ, α, c, and xl1 , ..., xlc to
maximize the following:

Ω(c) = max
α,σ,c






E

[

D
jk

M

]

(

k=1,...,c
j=1,...,c
k 6=j

) − E
[

D
jj

M

]

{j=1,...,c}







(8)

The optimization problem in equation (8) is non-linear,
and currently we use a brute force procedure for solv-
ing it. Namely, for each c = 2, 3, 4, ..., C, we use the
Matlab function fminbnd to perform a two dimensional
optimization in α and σ to maximize Ω(c). We then
choose the number of clusters c by finding the maximum
of Ω(2), ...,Ω(C), and use the α and σ associated with this
number of clusters. Note that this is not the optimal solu-
tion, but an approximation that works well in most practical
cases.

2.5. Clustering New Points

In order to cluster a new point without adding it to S and
re-inverting the matrix (I − αS) (as defined in Section
2.1), we once more use the property that two points are
similar if they have similar distances to all other points.
However, this time we measure similarity using the S ma-
trix as follows. Given a point xk, we calculate Wkj =
exp(−‖xk−xj‖

2/(2σ2)), for j = 1, ...n, obtaining a vec-
tor Wk. We then calculate Dk =

∑n
j=1

Wk(j) and com-
pute the vector in the S matrix that is associated with xk,
as Sk = D

−1/2

k WD−1/2. We further normalize Sk to have
length 1, and call it S1

k . Similarly the rows of S are normal-
ized to length 1, denoting this matrix by S1. We then obtain
a set of coefficients Θ = (θ1, ...., θn)T = S1(S1

k)T . This
vector has the property that if xk = xi, then θi = 1, but
if xk is very far away from xi then θi will approach zero.
Therefore, θi measures the closeness of xk to xi in S matrix
space (with θi = 1 being really close and θi = 0 really far).
We use this property to assign xk to a cluster by creating a
vector Fk = [vl1Θ

T , ..., vlcΘ
T ], where vl1 , ..., vlc are the

columns of V (defined in Equation 4) which correspond to
the cluster seed points in defined in Section 2.3. Point xk is
then assigned to a cluster yc using the following function:
yc = arg maxj≤c Fk, where j refers to an element in the
vector Fk.

3. Experimental Results

We evaluate our method using both synthetic data problems
and real world data. The results will be compared with Ng’s
Spectral Clustering algorithm presented in [3] and Self-
Tuning Spectral Clustering presented in [4], a variant of
Ng’s algorithm that can determine the Kernel matrix and
the number of clusters automatically which demonstrated
good results on image segmentation problems. To evalu-
ate the performance of out-of-sample techniques we will
report error rates on the data sets for our method and the
techniques for Spectral Clustering presented in [10]. In
all the problems, the desired assignment to the classes is
known, and we use this to report an error rate. We evalu-
ate the assignment to clusters by computing an error rate,
i.e. given the correct number of clusters, how many exam-
ples are assigned to the wrong cluster. Since the clusters
may be discovered in a different order than originally la-
beled (e.g. clusters are discovered in order 3, 2, 1 instead
of 1, 2, 3), we use the permutation on the algorithm’s la-
bel assignments that results in the lowest error rate. The
parameters σ, α and C, the number of clusters, are found
by the algorithms unless noted otherwise. To have means
of comparison of how well our algorithm finds outliers, we
compare this to Spectral Clustering as well. We determine
outliers with Spectral Clustering by using the distance to
the K-Means cluster centers.

Note that clustering algorithms with parameters (except the
number of clusters) do require a fine-tuning until the user is
satisfied with the solution. Since we know the true labels,
but do not want to be “training on the test-set”, we will
give results for a range of the parameters and the error-
rate obtained if the algorithm was unable to find the “right”
solution automatically.

3.1. Synthetic Data

In this experiment, we consider the two-moon and spiral
synthetic data sets. The spiral data that was used in [11]
and two-moon has been used as an example in numerous
other manifold related experiments [5, 4]. Note that these
synthetic data sets can not be clustered in a meaningful way
by methods that assume a compact shape for the data like
K-means [5, 11].

For the two-moon problem (see figure 2 (a)) we used σ and
α as determined by our approximation of the optimization
problem in equation (8). For two-moons our algorithm cor-
rectly determined the number of clusters and automatically
determined parameters (σ = 0.0415, α = 0.9999999) that
separate the two clusters. The centroid points determined
by our algorithm have been marked with a star. The size of
the dots are proportional to their largest value in F ∗. We
can see that the intensity gets smaller the further away the
point is from the centroid.

For the spiral data our algorithm determined automatically



Clustering Through Ranking On Manifolds

that there are 3 clusters and determined the parameters σ =
0.039 and α = 0.999999 for the three spirals. The points
with the smallest intensity are located at the end of each
spirals since the centroid of each spiral is in the middle.
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Figure 2. Synthetic Data: Both algorithms were able to auto-
matically determine the parameters and number of clusters. The
size of each dot shows the “inlierness”. The plot in the right-most
column shows out-of-sample points. (a) Results on the two moon
and spiral synthetic data with our algorithm. The centroid-point
for our method is marked with a star. (b) Results using Spectral
Clustering. Left and middle: manually determined σ = 0.1, au-
tomatically determined σ.

In figure 2 (b) we show the the cluster assignments of Spec-
tral Clustering for the two data sets. In the figure, from left
to right, we show the result with a manually determined
kernel σ, automatically determined kernel matrix (Self-
Tuning Spectral Clustering) and the assignment of previ-
ously unseen points to the existing clustering solution. The
unseen points were generated by distorting the data set by
adding a uniformly distributed random number within±0.2
to each coordinate.

Out-of-sample: The Spectral Clustering out-of-sample ex-
tension obtained an 0.0429 error rate on the two moon data
and a 0.1587 error rate on the three spirals. Our method
obtained an 0.0429 error rate on the two moon data and a

0.1455 error rate on the three spirals.

Outliers: Also note the difference in the size of points near
the centroid of the two moons and the ends of each moon,
i.e. points at the ends of each moon are more likely to be
outliers than points closer to the center. Also note that with
Spectral Clustering (Figure 2 (b), top left) the intensity for
all the points is mostly the same. In figure 5 we show a
3D-plot showing the distance to the center for each data
point.

α-parameter: To use Spectral Clustering one needs a suit-
able Kernel-σ and the number of clusters. Since our al-
gorithm has one more parameter than Spectral Clustering,
we will now demonstrate how this parameter influences the
outcome of the label assignments. In figure 3 we can see
that a change in α can result in a drastic changes in the sep-
arability of the three spiral data as some points are assigned
to the wrong spiral. We see that the clustering can change
significantly, if α is not optimized.
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Figure 3. Influence of parameter α: Clustering of three spirals
with α = 0.9 (left) and α = 0.99 (right)

3.2. USPS Digits Data

In this experiment we address a classification task using the
USPS dataset. The set consists of 16x16 images of hand-
written digits. We use digits 1, 2, 3, and 4 in our experi-
ments with the first 200 examples from the training set and
the following 200 examples as unseen examples that will
be added to the clusters.

We first use our algorithm to discover the different classes
and label one example of each class. Our algorithm de-
termined σ = 0.811396 and α = 0.999981. The num-
ber of clusters was automatically determined to be C =
4. This results in an error rate of 0.0238 which is a
slightly better error rate than the error rate obtained with
the semi-supervised consistency method with 1 random la-
beled point per class.

Using Ng’s algorithm for spectral clustering, we manually
determine the optimal value for sigma (σ = 5). We ob-
tained a 0.07 error rate on the digits data, and the rota-
tion alignment method correctly predicts 4 clusters with the
manually determined sigma. In table 1, we list the differ-
ent error rates and number-of-cluster predictions for differ-
ent sigmas. Note how the performance varies based on the
sigma. Using the self-tuning techniques – either with Ng’s
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σ 0.7 0.9 2 5 7

Error 0.477 0.292 0.748 0.07 0.076
Clusters 7 6 5 4 4

Table 1. Spectral Clustering on USPS Digits Data

algorithm or using the rotation method – results in a 0.75
error rate, because the the algorithm assigns all the digits
to one cluster, despite the fact that we specified the number
of clusters.

Out-of-sample: We assign previously unseen examples to
the existing clusters (without recomputing F ∗) using the
method in section 2.5 and obtain an error rate of 0.0425.
Using the Bengio’s Out-of-Sample framework for Spectral
Clustering (σ = 5) results in an 0.1175 error rate.

α-parameter: To test how unstable the model is for
changes in α we run our algorithm again without letting
it optimize for α and fix α to 0.99. The algorithm deter-
mines the optimal σ as 0.0553. In this case we get results
as above with the same number of clusters. The error rate
on the training set increased to 0.0388, but the error rate
for the previously unseen points changed to 0.035. This
demonstrates that optimizing for both σ and α gives better
results.

Outliers: In figure 4 (a) we evaluate how well the methods
can find outliers. Our method finds centroid points that are
clearly “average” examples of their respective class. The
outliers for all the digits have some twist to them: a one
with an underline, a misclassified 4, rotated digits, or other-
wise illegibly written digits. In figure 5 (b) we can see that
Spectral Clustering with a manually determined sigma does
not produce a usable outlier measure. The points closest to
their respective center are sometime outliers. Self-Tuning
Spectral Clustering failed on this data set, and we found the
outliers to be unusable. In figure 5 (c) we show a plot of
the distances as determined by Spectral Clustering for each
digit to their respective center.
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Figure 4. USPS handwritten digits data: (a) the left-most digit
is the centroid for each class followed by the worst outliers for the
class; (b) overall worst outliers;
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Figure 5. Outliers determined by Spectral Clustering: (a)
Class-Inlierness plotted for the two-moon data (b) Digit outliers;
the left-most digit is the digit closest to the respective center (c)
Distance to Cluster Center for each digit (Spectral Clustering vs.
Self-Tuning Spectral Clustering)

3.3. 20 Newsgroups Dataset

In the first experiment, we will try to cluster natural lan-
guage text from the 20 newsgroups dataset (version 20-
news-18828). Analogous to the experiments with the con-
sistency method, we choose the topics in rec.∗ which con-
tains autos, baseball, hockey and motorcycles. The arti-
cles were preprocessed using the Rainbow software pack-
age with the following options: (1) skipping any header as
they contain the correct newsgroup; (2) stemming all words
using the Porter stemmer; (3) removing words that are on
the SMART system’s stop list; (4) ignoring words that oc-
cur in 5 or fewer documents. By removing documents that
have less than 5 words, we obtained 3970 document vec-
tors in 8014 dimensional space. The documents were nor-
malized into TFIDF representation, and the distance ma-
trix was computed, as in [5], using Wij = exp(−(1− <
xi, xj > / ‖ xi ‖ ‖ xj ‖)/(2σ2)).

Our algorithm discovered only two clusters on this dataset
that do not make sense intuitively so we fixed the number
of clusters to C = 4. We let the algorithm optimize for α
and σ and obtain an error rate of 0.5659. We rerun the same
experiment and set α = 0.99, then obtained the same error
rate of 0.5659.We attribute this to the fact that, in the orig-
inal experiment in [5], the consistency method required 50
labeled examples in the semi-supervised learning scenario
instead of the 4 we have provided with the clustering. We
believe that the manifolds of each cluster have holes, which
violates the assumptions we made for our method.

For Spectral Clustering, we used the same Kernel that was
used with our method. Using Spectral Clustering with a
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σ 0.2 0.7 0.9 2 3 4

Error 0.739 0.545 0.147 0.111 0.109 0.11
Clusters 6 5 3 3 3 3

Table 2. Spectral Clustering on Newsgroup data: Error-rate and
predicted number of clusters with varying sigma.

σ 0.2 0.7 0.9 2 3 4

Error 0.625 0.5 0.5 0.245 0.276 0.505
Clusters 10 6 4 3 5 8

Table 3. UCI Control data: Error-rate and number of clusters pre-
dicted for Spectral Clustering

manually determined σ = 3, we obtained an error rate of
0.11. Self-Tuning Spectral Clustering with the number of
clusters specified results in a 0.7499 error rate as almost all
documents are assigned to the same cluster. The number of
clusters, using a manually determined sigma, was falsely
predicted as 3.

3.4. Control Data

We use the Synthetic Control Chart Time Series dataset, a
time-series problem, from the UCI database as it was sug-
gested for clustering. The dataset contains 600 examples of
control charts that have been synthetically generated. The
clusters that are supposed to be found have 100 examples
each.

Our method determines C = 6 clusters with σ = 0.2517
and α = 0.99. However, the assignment to the clusters
produces a 0.4117 error rate. Since we are unhappy with
the model we obtained, we use equation (6) to remove the
50 worst outliers and rerun the experiment for C = 6 clus-
ters. The values for σ and α change to σ = 0.2067 and
α = 0.99. The error rate sinks to 0.28. This clearly demon-
strates that our method can successfully identify outliers
that interfere with the clustering process. For this dataset
our algorithm did not automatically give the best results.
Since the result for this data set is not satisfying, we give
error rates for different σ and α values as one might have
found them manually in table 4. Note that the error rates
differ significantly with varying α, which shows that this
parameter can have a significant influence on the cluster
assignment of the data.

Using Spectral Clustering we find the best error rate with
manually determined σ = 2 of 0.245. A table with error-
rates for different sigmas is in table 3. Specifying the num-
ber of clusters, Self-Tuning Spectral Clustering results in
an error rate of 0.5.

3.5. Yale Face-Database B

We now consider the setup used the in [12] and use the Yale
Face Database B [13]. We use images of individuals 2, 5
and 10 and down-sample each image to 30x40 pixels. This

σ 0.2 0.3 0.4 0.6 0.8

Error, α = 0.99 0.59 0.476 0.656 0.83 0.83
Error, α = 0.8 0.49 0.201 0.666 0.52 0.52
Error, α = 0.7 0.3 0.246 0.476 0.34 0.41

Table 4. UCI Control data: Error-rate for varying σ and α

gives us 1755 images with 1200 dimensions to work with.
In the original setup PCA was applied to reduce the images
to 3 dimensions, but we will apply both our algorithm and
Spectral Clustering to the 1200 dimensional problem. Our
algorithm determines that there are only 2 clusters, putting
the faces of individuals 2 and 10 into one cluster. We set the
number of clusters to 3 and rerun the experiment. Given the
number of clusters the algorithm automatically determines
σ = 1.0803 and α = 0.99999999 and separates the three
individuals faces with no errors. Note that no preprocess-
ing, like PCA, was used in this case.

In comparison, Self-Tuning Spectral Clustering solved the
problem without errors as well and correctly predicted 3
clusters. Spectral Clustering with a manually determined
σ = 0.9 solved the problem without errors as well. Due to
space constraints we can not make a comparison with the
outliers determined by Spectral Clustering.

Outliers: In figure 6 (a) we show the cluster representants
in the left most column. Note that in two out of three clus-
ters it is the ambient shot of the person. In one case it is the
center that one would have wished for: the ambient shot
from the front, i.e. the clustering found the “real” center
of the data as all the other data points are changes of pose
and angle. In figure 6 (b) we show a PCA projection of the
faces down to 3 dimensions and marked the outliers that
are shown in (a). Note that the outliers are indeed the most
outside points of the point clouds. Also note that the worst
outlier for subject 5 (middle row, second to left) is an image
that is slightly corrupted and was therefor correctly marked
as the most outlieing face.

4. Conclusion

We propose a new clustering algorithm that has the follow-
ing characteristics: 1) all clustering parameters (including
the number of clusters) can be estimated directly from the
data; 2) points that are most representative of each clus-
ter are implicitly identified; 3) points that are outliers from
all other points are implicitly identified; 4) points that are
outliers within each cluster are implicitly identified; and,
5) the learned model can cluster previously unseen points
without relearning or modifying the original model. Within
the proposed framework, similarity between points is mea-
sured by how each point orders distances to other points on
the manifold. This, similarity measure naturally gives rise
to all of the above characteristics, and differentiates the al-
gorithm from other manifold clustering algorithms such as
spectral clustering [2, 3, 4].
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Figure 6. Yale Face Database B: (a) left-most column are the
cluster centers, middle and right are the two worst outliers per
class. The upper title of each image designated subject and pose
of the Yale Face Database B. The lower title of the image desig-
nates the light source direction with respect to the camera axis in
azimuth (e.g. ’A+035’) and the elevation in degrees (e.g. ’E+40’);
(b) a PCA-projection of the face data. The outliers plotted in (a)
that the algorithm identified have been marked and are at the most
outside points of the blobs.

Experimental evidence is presented showing that the pro-
posed algorithm significantly outperforms spectral cluster-
ing in detecting global and within cluster outlier points, as
well as identifying points that are most representative of the
class. Furthermore, standard spectral clustering algorithms
have two learning parameters: the number of clusters and
the affinity parameter σ used to define the clusters. The
algorithm proposed in this paper introduces a third param-
eter α which controls the dispersion of labels across points.
This third parameter can lead to significant improvement
in clustering performance over standard Spectral Cluster-
ing. Furthermore, experimental results show that, on real
world data, the proposed algorithm can outperform other
algorithms which estimate clustering learning parameters
from data (see [4]).

This paper opens a number of interesting theoretical ques-
tions. The first of these concerns obtaining efficient algo-

rithms for solving the proposed optimization problem (this
paper uses standard Matlab functions for nonlinear 2D op-
timization, leaving much room for improvement). Second,
our optimization framework can optimize a different set of
model parameters for each cluster, which may significantly
improve clustering performance on data that has different
scales for different clusters. Finally, we measure closeness
between points not by standard manifold distance metrics,
but by how each point orders distances to other points in
the manifold. This similarity metric warrants further theo-
retical study.
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