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Abstract

This paper concerns the experimental assess-
ment of tempering as a technique for im-
proving Bayesian inference for C&RT mod-
els. Full Bayesian inference requires the
computation of a posterior over all possible
trees. Since exact computation is not pos-
sible Markov chain Monte Carlo (MCMC)
methods are used to produce an approxi-
mation. C&RT posteriors have many lo-
cal modes: tempering aims to prevent the
Markov chain getting stuck in these modes.
Our results show that a clear improvement is
achieved using tempering.

1. Introduction

The purpose of this paper is to experimentally assess
the degree to which tempering can improve the perfor-
mance of a Markov chain Monte Carlo (MCMC) ap-
proach to doing Bayesian inference for Classification
and Regression Tree (C&RT) models. In the Bayesian
approach to C&RT learning the ultimate goal is to
compute an entire posterior distribution over all possi-
ble C&RT models, rather than generate a single ‘best
guess’ model as does the standard greedy C&RT al-
gorithm (Breiman et al., 1984). In all realistic cases
the space of possible C&RT models is too big to al-
low exact computation of the posterior, so (in all re-
search of which we are aware) an approximate sample
from the posterior is generated using MCMC sampling.
(MCMC sampling is explained in Section 4.)

2. On getting stuck and unstuck

The key difficulty with this MCMC approach is that
the posterior distribution will have many local modes,
making it difficult for any MCMC algorithm to pro-
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duce a representative sample from the posterior. In
short, there is a tendency for the Markov chain to ‘get
stuck’ at a local mode. Chipman et al. (1998) sum up
the issues nicely:

. . . the algorithm gravitates quickly to-
wards [regions of large posterior probability]
and then stabilizes, moving locally in that
region for a long time. Once a tree has
reasonable fit, the chain is unlikely to move
away from a sharp local mode by small steps.
. . . Although different move types might be
implemented, we believe that any MH algo-
rithm for CART models will have difficulty
moving between local modes.

More recently, Chipman et al. (2003) have explored
generalised tree models where the same basic MCMC
approach is used and it remains the case that “the
chain may get trapped in local maxima”. Denison
et al. (2002, p.165) note similarly that “. . . in prac-
tice it is because the waiting times in local modes are
so large that full sampling is infeasible.” In our own
recent work (Angelopoulos & Cussens, 2005), we have
made some progress on this problem, but there re-
mains plenty of room for further improvement.

Bayesian C&RT is not the only line of research apply-
ing MCMC to Bayesian inference of tree-based models:
there is also bioinformatics research on Bayesian esti-
mation of phylogeny. Phylogenetic trees are like family
trees, but they relate species rather than individuals.
The species are situated at the leaves of the tree, and
common ancestors are denoted by internal nodes of
the tree. Phylogenetic trees are inferred from aligned
sequence data (usually genes) from the various species
of interest. A number of approaches exist, including
maximum likelihood and compression-based learning.
Bayesian inference using MCMC is becoming increas-
ingly popular, e.g. using the freely available MrBayes
package ( http://morphbank.ebc.uu.se/mrbayes/).
A description of MrBayes is provided by Altekar et al.
(2004) and references contained therein.
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Bayesian phylogenetic inference has the same essential
problem as Bayesian C&RT:

The posterior probability of trees can con-
tain multiple peaks. . . . MCMC can be prone
to entrapment in local optima; a Markov
chain currently exploring a peak of high prob-
ability may experience difficulty crossing val-
leys to explore other peaks. (Altekar et al.,
2004).

The approach successfully taken in the MrBayes pack-
age to address this ‘stickiness’ is to use Metropolis-
coupled MCMC also known as tempering. Tempering,
described in Section 5, uses extra ‘hot’ chains in ad-
dition to the normal ‘cold’ MCMC chain. The hot
chains move through the space more easily, and, to-
gether with probabilistic ‘swaps’ between hot and cold
chains, allow more rapid convergence to the true pos-
terior.

Our goal is to see whether this successful ‘unsticking’
method will also succeed for C&RT models. To ad-
dress this issue we first, in Section 3, consider the basic
ingredients of Bayesian C&RT: priors and likelihoods.
In Section 4 we describe how to use the Metropolis-
Hastings algorithm to explore the posterior distribu-
tion determined by a particular prior and likelihood.
Section 5 describes how tempering works and Section 6
describes our datasets. The key section of the paper
is Section 7 where we compare results obtained with
and without tempering. Section 8 contains conclusions
and plans for future work.

3. Bayesian C&RT

In this paper a C&RT model consists of a tree struc-
ture T and its parameters Θ. The model (Θ, T ) de-
fines a probability model : where the parameters Θ de-
fine a distribution for each leaf of T . This follows the
standard approach in Bayesian C&RT, and indeed all
of this section, with the exception of that which con-
cerns stochastic logic programs, sets up the standard
Bayesian C&RT framework as found in the literature.
We use the same notation as Chipman et al. (1998)
throughout.

In the case of classification trees, Θ defines a distribu-
tion over the classes for each leaf of the tree T . The
tree is defined in the normal way via splitting rules:
note that threshold values in splitting rules form part
of the tree T , not Θ. T maps an unlabelled exam-
ple x to a unique leaf, so that (Θ, T ) defines a con-
ditional probability model P (y|Θ, T, x) where y is the
class for x. In this paper we restrict attention to clas-

sification trees, but trees can be used to define many
other probability models, see (Chipman et al., 2003).
If T has b leaves, then Θ = (θ1, . . . θb). If there are
K possible classes, then for each leaf i (1 ≤ i ≤ b),
θi = (pi1, . . . piK) is just the vector of class probabili-
ties for that leaf.

As for any application of the Bayesian approach, the
goal in Bayesian C&RT is to compute a posterior dis-
tribution over models given a prior and some data.
Here, each model is a parameterised tree (Θ, T ), and
the data is of the form (X,Y ). X is a vector of n unla-
belled examples, and Y is the corresponding vector of
n class labels, so that Yj is the class label for example
Xj .

The posterior distribution over models is thus
P (Θ, T |X,Y ). We take advantage of the factorisa-
tion P (Θ, T |X,Y ) = P (Θ|T,X, Y )P (T |X,Y ). We
will chose conjugate priors so that P (Θ|T,X, Y )
is analytically computable for any T,X, Y . Inter-
est then focuses on the model structure posterior
P (T |X,Y ). From Bayes’ theorem we have that
P (T |X,Y ) ∝ P (T |X)P (Y |X,T ). The model struc-
ture prior P (T |X) and marginal likelihood P (Y |X,T )
are now defined in Sections 3.1 and 3.2, respectively.

3.1. Priors for Bayesian C&RT

The model structure prior P (T |X) is defined via a
stochastic sampling procedure. In this we follow Chip-
man et al. (1998). However, our C&RT priors are
just a specific instance of a general logic programming
based method for defining priors over model struc-
ture. We define priors using stochastic logic programs
(SLPs). The set of permissible models is determined
by defining a first-order predicate cart/1 in a logic
program, and then adding probabilities to the logic
program so that there is a probability distribution over
instantiations of that predicate. One principal ratio-
nale for such an approach is that the logic-based for-
malism is sufficiently flexible to allow the same system
to be used for different sorts of Bayesian model infer-
ence. Our system has been applied to learning Bayes
nets, as well as C&RT models: in each case we just
use an appropriate SLP to define a prior, and plug in
the necessary likelihood function.

The focus on this paper is to assess the utility of tem-
pering, rather than address the knowledge engineering
issues of using SLPs to encode priors encoding domain
knowledge. The latter issue is addressed elsewhere
(Angelopoulos & Cussens, 2005). Consequently, we
have chosen to use the same family of priors (encoded
as SLPs) as Chipman et al. (1998). Such a prior grows
a C&RT tree by starting with a single leaf node and
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then repeatedly splits each leaf node η with a prob-
ability α(1 + dη)−β , where dη is the depth of node η
and α and β are prior parameters set by the user to
control the size of trees. Unsplit nodes become leaves
of the tree. If a node is split, the splitting rule for that
split is chosen uniformly. Since P (T |X) is conditional
on X we can (and do) give zero probability to any
tree which has a leaf which contains fewer examples
than some user-defined threshold. If the node-splitting
procedure produces such a leaf, our SLP prior invokes
Prolog-based backtracking to (probabilistically) search
for a tree which does meet the constraint.

3.2. Likelihoods for Bayesian C&RT

The marginal likelihood P (Y |X,T ), requires Θ to be
integrated out of the full likelihood P (Y |X,Θ, T ):
that is what makes it ‘marginal’. This integration
is with respect to the structure-conditional parame-
ter prior P (Θ|T,X), which we define in the standard
way. Firstly, we choose to define the prior to be in-
dependent of X so that P (Θ|T,X) = P (Θ|T ). Sec-
ondly, we assume independence between the θi in Θ,
so that P (Θ|T ) =

∏b
i=1 P (θi|T ) where b is the num-

ber of leaves in T . Recall that θi is (pi1, . . . piK): a
class probability distribution. For all i, we set P (θi|T )
to the same distribution: a Dirichlet distribution with
parameters (α1, . . . , αK), for some user-defined choice
of αk (1 ≤ k ≤ K).

With such a parameter prior there is a closed form for
P (Y |X,T ). Let ni denote the number of examples at
leaf i in tree T . Let nik be the number of examples of
class k reaching leaf i, (so that ni =

∑

k nik). Then
the marginal likelihood is:

p(Y |X,T ) =

(

Γ(
∑

k αk)
∏

k Γ(αk)

) b
∏

i=1

∏

k Γ(nik + αk)

Γ(ni +
∑

k αk)
(1)

4. Exploring posteriors with the

Metropolis-Hastings algorithm

The space of possible C&RT trees is too large to al-
low the exact computation of posterior probabilities
for all trees. Instead, we will produce an approxi-
mate sample from the posterior using MCMC. As in
all other Bayesian C&RT work of which we are aware,
we use the Metropolis-Hastings algorithm to produce
this sample. The Metropolis-Hastings algorithm is
an MCMC algorithm which defines a Markov chain
(T (i)) with a transition kernel K(T i, T i+1) as follows.
T (i+1) is produced by generating T ′ ∼ q(·|T (i)) for
some proposal distribution q. An acceptance probabil-
ity α(T (i), T ′) is used to decide whether to accept the

proposed T ′. T (i+1) = T ′ with probability α(T (i), T ′)
(the proposed T ′ is accepted) and T (i+1) = T (i) with
probability 1 − α(T (i), T ′). By setting the acceptance
probability like this:

α(T (i), T ′) = min

{

P (T ′|X,Y )

P (T (i)|X,Y )

q(T (i)|T ′)

q(T ′|T (i))
, 1

}

the chain (T (i)) will converge to sampling from the
desired posterior P (T |X,Y ) under weak conditions
(whatever the starting point T (0) of the chain). Defin-

ing Rq(T
(i), T ′) to be q(T (i)|T ′)P (T ′|X)

q(T ′|T (i))P (T (i)|X)
it is not diffi-

cult to see (via Bayes theorem) that

α(T (i), T ′) = min

{

Rq(T
(i), T ′)

P (Y |T ′, X)

P (Y |T (i), X)
, 1

}

In our approach we choose proposal distributions q
where the value Rq(T

(i), T ′) is easily computable for
any pair of trees T (i), T ′.

A more detailed account of our various proposal
mechanisms can be found elsewhere (Angelopoulos &
Cussens, 2005), here we just describe the essential
features of one particular mechanism, called uniform
choice backtracking (quc), which has proved the most
successful in practice.

Recall that a tree is sampled from our prior by prob-
abilistically splitting leaf nodes and probabilistically
choosing splitting rules. Consider the sequence of
probabilistic choices made to generate the tree T from
the prior: this includes split/don’t split choices as well
as choices for splitting rules and splitting thresholds.
Each such probabilistic choice is situated at a choice
point. Let dT be the number of choice points that were
travelled through to produce tree T .

To propose a new tree T ′ from an existing one T (i)

using quc, the fundamental idea is to probabilistically
backtrack to one of these choice points according to
a uniform distribution and then probabilistically re-
grow the tree from the chosen choice point according
to the prior. However, we have recently (Angelopoulos
& Cussens, 2005) refined this basic approach so that
the choice points are arranged in a tree (a Prolog proof
tree, not a C&RT tree!) rather than a sequence. This
permits the proposal to prune and regrow at arbitrary
internal nodes of the C&RT tree without altering other
branches of the tree.

Because the prior is incorporated into the proposal
mechanism in this way, it turns out that Rquc

(T (i), T ′)
is simply dT (i)/dT ′ and so the acceptance proba-

bility is αuc(T
(i), T ′) = min

{

d
T

(i)

d
T ′

P (Y |T ′,X)
P (Y |T (i),X)

, 1
}

.

αuc(T
(i), T ′) is thus easily computable, particularly
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since the data-independent part of the marginal likeli-
hood (1) cancels out.

Denison et al. (2002, p.164) argue that to address
the problem of ‘stickiness’ “The most obvious idea
would be to add/delete whole branches of the tree,
not just to use simple split/combine moves . . . ” but
do not provide a way to achieve this. The Prolog proof
tree based procedure just outlined does achieve this.
However, this is at the expense of tying the proposal
closely to the prior and so restricting how proposals
can be made. For example, we cannot implement
the CHANGE-SPLIT and SWAP proposals detailed
by Denison et al. (2002, p.161).

5. Tempering

As will be seen in Section 7 in some cases straightfor-
ward uniform choice backtracking provides good pos-
terior probability estimates, but in other cases there is
room for improvement. In this section we describe
the technique of tempering (aka Metropolis-coupled
MCMC ) (Geyer & Thompson, 1995) which aims to
achieve improved mixing for Markov chains at the ex-
pense of greater computational effort.

The basic idea is simple and is described in numerous
papers; here we follow the account given by (Altekar
et al., 2004). As well as running a ‘cold’ chain which
has the desired posterior P (T |X,Y ) as its stationary
distribution, we also run ‘hot’ chains with stationary
distributions P (T |X,Y )β for different values of a heat
value β (0 < β < 1). Note that the smaller β is, the
flatter P (T |X,Y )β is, and the smaller is the risk of a
chain getting stuck in local modes.

To run a hot chain with heat value β using our uniform
choice backtracking proposal, it suffices to alter the
acceptance probability to:

αβ
uc(T

(i), T ′) = min

{

dT (i)

dT ′

(

P (Y |T ′, X)

P (Y |T (i), X)

)β

, 1

}

The closer β is to 0, the greater the acceptance prob-
ability and the more easily the chain moves through
the space. Smaller values of β correspond to hotter
chains.

Tempering also involves swaps between chains. After
a given number of iterations of each chain, two chains
are chosen at random and their states are swapped
with a certain swap-acceptance probability αswap. In
our approach a swap is proposed after every iteration.
Suppose that two chains with heat values β1 and β2

are proposed for swapping and these two chains are
currently visiting trees T1 and T2, respectively. Then

in our case:

αswap = min

{

(

P (Y |T2, X)

P (Y |T1, X)

)(β1−β2)

, 1

}

It remains to choose how many chains to run and what
their heat values should be. Given that the MrBayes
package had successfully used tempering we simply
opted for the (default) approach used there. Four
chains were run with heat values βi = 1/(1+∆T (i−1))
for i = 1, 2, 3, 4 and where the temperature ∆T was set
to 0.2. Note that chain i = 1 is the cold chain. Only
trees visited by the cold chain are collected to form
the MCMC sample: the hot chains are there only to
allow the cold chain to make ‘bigger jumps’ via state
swapping.

6. Datasets

In our experiments we have used 5 datasets: Wisconsin
breast cancer (BCW), Kyphosis (K), Pima (PIMA),
Letter Recognition (LR) and Waveform (WF). BCW
was originally donated to the UCI depository by Wol-
berg and Mangasarian (1990) and was used by Chip-
man et al. (1998). BCW contains 16 missing data
values. Following (Chipman et al., 1998) we have sim-
ply deleted datapoints which contain missing values.
Dataset K comes as part of the rpart R package for
building and manipulating classification and regression
trees. PIMA is a UCI dataset which Denison et al.
(2002) used for extensive Bayesian C&RT analysis. LR
and WF are both datasets from the UCI repository.

With the exception of WF, each dataset was divided
arbitrarily into a training set (80%) and a hold-out
set (20%). Due to an unfortunate error, for WF these
proportions were swapped. The hold-out set is not a
‘test set’ in the conventional sense, since our goal—
as is normal in MCMC research—is to maximise the
accuracy of our approximation to the posterior, not
to maximise predictive accuracy. The hold-out set is
used to evaluate this approximation, as described in
Section 7.2.

The datasets are summarised in Table 1. For each
dataset, one of the values of the class variable was arbi-
trarily designated as ‘positive’. Note that, by chance,
there are significantly fewer positives in the hold-out
set for K than in the training set. Note also that K is
something of a ‘toy’ dataset: small and with very few
attributes.

7. Experimental results

The same prior was used in all experiments: α =
0.95, β = 1 with all Dirichlet prior parameters set to 1,
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Name Size |x| |Y | Pos%(Tr) Pos%(HO)

K 81 3 2 81.5% 68.8%
BCW 683 9 2 66.2% 60.3%
PIMA 768 8 2 65.4% 64.1%
LR 20000 16 26 3.85% 4.3%
WF 5000 40 3 35.6% 33.4%

Table 1. Description of datasets. Size denotes the number
of examples in both training and hold-out set. |x| denotes
the number of attributes. |Y | is the number of classes. The
last 2 columns give the percentage of ‘positives’ in the train
and hold-out set, respectively.

and where leaves have to contain at least 5 examples.
For datasets K, BCW and PIMA, each Markov chain
we ran was determined by 3 parameters: dataset (=K,
BCW or PIMA); number of iterations (=50000, 125000
or 250000) and tempering (=TRUE or FALSE). Only
the ‘training set’ portion of each dataset was used.
Each of these 3 × 3 × 2 = 18 Markov chains was re-
alised 3 times using different random seeds, leading to
18 × 3 = 54 runs. For datasets LR and WF only a
subset of such experiments have been performed. For
datasets K, BCW, PIMA, LR and WF, each 1000 iter-
ations took, respectively: 1.8s, 8.1s, 39s, 530s and 291s
without tempering. With tempering turned on each
1000 iterations took: 4.9s, 17s, 129s, 2368s and 1151s
respectively. Runs could thus run for many hours.
For each run, we collected the trees visited (if tem-
pering=TRUE only cold chain trees) and plotted the
marginal likelihood, number of leaves and tree depth
against the iteration number. We use no ‘burn-in’: all
trees are kept. Such trajectories often allow ‘sticking’
to be visually obvious. Unfortunately there is no space
here to present and analyse these trajectories.

Our goal is to produce a good approximation to the
true posterior distribution over C&RT models for any
given prior and set of training data. Since the true
posterior is unavailable—which is why we resort to
MCMC—a direct evaluation of the accuracy of our
approximations is not possible. Instead we compare
posterior probability estimates produced from distinct
realisations of a Markov chain. If different runs pro-
duce similar (resp. dissimilar) results it is evidence that
they are (resp. aren’t) both reasonable approximations
to the true posterior.

7.1. Robustness of posterior tree probability

estimates

The simplest comparison is to compare estimates of
posterior probability for individual trees. Considering
only our longest runs of 250,000 iterations with tem-
pering turned on, Tables 2–4 show the probability es-

timates produced for the most frequently visited trees
for K, BCW and PIMA. Each row corresponds to a
tree (tree not shown), each column to a different ran-
dom seed for the MCMC run. We see that for dataset
K, the estimated posterior probability for each tree is
very similar for each of the 3 runs. Indeed Bayesian
inference for K is so easy that 3 runs of only 50,000 it-
erations without tempering produce stable probability
estimates as Table 5 shows.

In contrast, for PIMA and BCW frequently visited
trees in one run are virtually never visited in other
runs, so posterior probability estimates for individual
trees are quite different. (We expect similarly poor
results for LR and WF, but have yet to do this partic-
ular comparison). All other runs involving PIMA and
BCW also display this behaviour. This is essentially
because for PIMA and BCW the set of possible trees
is much larger than for K.

Tree p̂seed1(Ti) p̂seed2(Ti) p̂seed3(Ti)
T1 0.086416 0.088524 0.087404
T2 0.062296 0.062904 0.063624
T3 0.060360 0.057648 0.058220
T4 0.025808 0.025200 0.025764
T5 0.024512 0.024404 0.025700

Table 2. Probability estimates for 5 most frequent trees for
3 different random seeds. Data=K, iterations=250,000,
tempering=TRUE

Tree p̂seed1(Ti) p̂seed2(Ti) p̂seed3(Ti)
T1 0 0.008112 0
T2 0.004612 0 0
T3 0 0 0.004048
T4 0 0 0.003600
T5 0 0.003432 0

Table 3. Probability estimates for 5 most frequent trees
for 3 different random seeds. Data=PIMA, itera-
tions=250,000, tempering=TRUE.

Tree p̂seed1(Ti) p̂seed2(Ti) p̂seed3(Ti)
T1 0 0 0.088856
T2 0 0 0.070996
T3 0 0.04732 0
T4 0 0 0.04316
T5 0 0.03998 0

Table 4. Probability estimates for 5 most frequent trees for
3 different random seeds. Data=BCW, iterations=250,000,
tempering=TRUE.
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Tree p̂seed1(Ti) p̂seed2(Ti) p̂seed3(Ti)
T1 0.08326 0.07898 0.08338
T2 0.05900 0.06154 0.06170
T3 0.05574 0.05664 0.05610
T4 0.02466 0.02724 0.02790
T5 0.02564 0.02674 0.02504

Table 5. Probability estimates for 5 most frequent trees
for 3 different random seeds. Data=K, iterations=50,000,
tempering=FALSE.

7.2. Robustness of posterior class probability

estimates

The results of the previous section suggest that the
presented method only works for simple cases like
dataset K. However, if we want to estimate the poste-
rior class distribution for any given unlabelled exam-
ple x′, good results are available for all datasets. The
posterior probability that x′ has class y′ is:

p(y′|x′, X, Y ) =
∑

T

P (T |X,Y )

∫

p(y′|x′,Θ, T )P (Θ|T,X, Y )dΘ

Since we have chosen to use Dirichlet prior distribu-
tion for the parameters, the integral has an analytic
solution: it is just the mean of the posterior Dirichlet
distribution at the leaf where T sends x′. The poste-
rior structure distribution P (T |X,Y ) is estimated, of
course, by our MCMC samples: we pass through each
tree in the sample and find the relevant mean value,
add all these up, and divide by the number of trees.

For each example in a test set, we find the estimated
probability that it is ‘positive’ for 2 different MCMC
runs differing only in the random seed used. We then
plot these values against each other. Figs 1–9 show
a representative selection of the results where we vary
the dataset, the number of iterations and whether tem-
pering is used or not. Clearly, we hope that the 2 esti-
mates from the 2 different runs are close, so the more
points near the diagonal the better.

As Fig 1 shows, all points for dataset K are right on the
diagonal as expected, even for only 50,000 iterations
with no tempering. Note also that all class=positive
probabilities are estimated to be greater than 0.5, re-
flecting the preponderance of positives in the K train-
ing set. For PIMA and BCW, the (50k, tempering=T)
results are noticeably better than the the (250k, tem-
pering=F) ones. So even taking the extra computa-
tional effort into account, tempering helps here. For
LR and WF a visual inspection of Figs 6–9 does not
provide evidence in favour of tempering, however such
evidence is provided by the quantitative approach of
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Figure 1. Comparison of class=positive probability esti-
mates. Dataset=K, iterations=50,000, tempering=FALSE

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

-0.2  0  0.2  0.4  0.6  0.8  1  1.2

(tr_uc_rm_idsd_a0_95b1_i50K__s) 512 vs. 209
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Figure 5. Comparison of class=positive probability esti-
mates. Dataset=PIMA, iterations=250,000, tempering=F
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Figure 6. Comparison of class=positive probability esti-
mates. Dataset=LR, iterations=50,000, tempering=F
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Figure 7. Comparison of class=positive probability esti-
mates. Dataset=LR, iterations=50,000, tempering=T
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Figure 8. Comparison of class=positive probability esti-
mates. Dataset=WF, iterations=50,000, tempering=F
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Figure 9. Comparison of class=positive probability esti-
mates. Dataset=WF, iterations=50,000, tempering=T

the next section.

7.3. Robustness of predictive accuracy

It is instructive to summarise the effects of tempering
quantitatively. To this end we compared predictive
accuracies on the hold-out set using MCMC samples
produced using 3 different random seeds. To predict
the class of an example, one can either just choose
the most probable class or one can predict probabilis-
tically. In the latter case, x′ is predicted to be posi-
tive with probability P (y = positive|x′, X, Y ). Denote
these two predictive accuracies as accmax and accprob,
respectively.

Predictive accuracies for dataset K were virtually con-
stant for all random seeds, all chain lengths and
whether or not tempering was used. For K, we have
accmax = 11/16 = 68.8% always, since all examples
are more likely to be positive even though 5 are not.
accprob was either 67.4% or 67.5% (to 3 s.f.).

The results for the other datasets in Table 6, are more
interesting. The key columns are σaccmax

and σaccprob

which give the standard deviation in accmax and accprob

for MCMC samples produced from 3 different random
seeds. In 15 out of the 16 cases the standard deviation
is smaller if tempering is used. This reconfirms what
many of the plots show: that tempering leads to a
better approximation to the posterior.

8. Conclusion and discussion

The results in the previous section allow us to conclude
that tempering delivers improved results for Bayesian
C&RT (at least when there is some improvement to
make). Since these results have been produced using a
general SLP-based framework for Bayesian inference,
we can immediately apply tempering to other models.
We intend to begin with Bayesian networks.

However, it is worth considering why one might wish
to take a Bayesian approach to C&RT in the first



Tempering for Bayesian C&RT

Data iter t accmax σaccmax
accprob σaccprob

BCW 50K F 96.1% 1.9% 93.2% 1.2%
BCW 50K T 96.6% 0.9% 93.1% 0.4%
BCW 125K F 95.1% 0.3% 92.9% 0.7%
BCW 125K T 97.1% 1.2% 93.5% 0.5%
BCW 250K F 96.1% 1.2% 92.8% 1.4%
BCW 250K T 95.8% 0.3% 93.3% 0.1%

PIMA 50K F 76.5% 2.3% 67.2% 0.7%
PIMA 50K T 73.4% 1.7% 66.3% 0.4%
PIMA 125K F 73.8% 2.4% 66.4% 1.0%
PIMA 125K T 74.3% 1.9% 66.5% 0.8%
PIMA 250K F 76.9% 3.2% 66.7% 0.5%
PIMA 250K T 73.6% 1.6% 66.9% 0.3%

LR 50K F 62.4% 3.6% 30.3% 1.1%
LR 50K T 66.9% 0.1% 32.9% 0.5%

WF 50K F 71.0% 3.7% 55.6% 1.2%
WF 50K T 72.5% 2.9% 57.5% 0.8%

Table 6. Comparing variation in predictive accuracy for 3
MCMC runs using different random seeds. First 3 columns
are dataset, number of iterations and whether tempering
was used. Last 4 columns are means and standard devia-
tions in accmax and accprob

place. Bayesian C&RT is much slower than the stan-
dard greedy algorithm, and with a poorly chosen prior
there is no reason why it should lead to good predic-
tive accuracy. To see this, note that for our 5 datasets
the greedy algorithm (using the R rpart package with
default parameters, except for minbucket=5) has ac-
curacies of 75.0%, 95.5%, 76.4%, 46.1% and 74.1% on
the hold-out sets for K, BCW, PIMA, LR and WF,
respectively.

Except for LR, these figures are either slightly better
or not significantly worse than those achieved using our
best approximation to the posterior (250K iterations
with tempering). Finally, it is harder for a human to
interpret a sample of, say, 250,000 trees than a single
tree as is returned by the greedy approach.

However, extracting the single most visited tree and
the single maximum marginal likelihood tree can help
with interpretation in the same way as the tree re-
turned by the greedy algorithm. The latter tree is an
estimate of the maximum posterior probability tree
assuming a uniform prior. In addition, 2nd, 3rd etc
placed trees can also be used. Concerning predictive
accuracy, the key, of course, is not to choose an ar-
bitrary prior but one that (ideally) encapsulates all
relevant non-data information. Doing so means that
the class posterior probabilities eventually produced
are conditional on all the available information, and so
should be the optimal probabilities on which to base

decisions. Our use of SLPs is intended to provide a
flexible way of expressing this prior knowledge, and
elsewhere (Angelopoulos & Cussens, 2005) we show
that using prior knowledge does improve predictive ac-
curacy. A final argument for the Bayesian approach is
that making classification decisions with unequal mis-
classification costs is easy, as is drawing ROC curves,
since we have class probabilities, not just predicted
classes.
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