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Abstract

Hidden Markov Models (HMMs) model sequen-
tial data in many fields such as text/speech pro-
cessing and biosignal analysis. Active learning
algorithms learn faster and/or better by closing
the data-gathering loop, i.e., they choose the ex-
amples most informative with respect to their
learning objectives. We introduce a framework
and objective functions for active learning in
three fundamental HMM problems: model learn-
ing, state estimation, and path estimation. In ad-
dition, we describe a new set of algorithms for
efficiently finding optimal greedy queries using
these objective functions. The algorithms are
fast, i.e., linear in the number of time steps to se-
lect the optimal query and we present empirical
results showing that these algorithms can signifi-

1992). Intuitively, this is appealing because it will try to
choose the query that maximally divides the version space
of models. Another set of methods concerned with the size
of the model space amntropy-baseabjective functions,
which directly attempt to find queries that minimize the
posterior’s entropy (Mackay, 1992; Tong & Koller, 2000).
Another approach to active learning is director reduc-
tion, which values queries according to how much they are
expected to reduce future classification error (Roy & Mc-
Callum, 2001).

Active learning can be differentiated infmolbased and
streambased problems. The pool-based task occurs when
the learner can choose from a preexisting set of examples.
The stream-based version only allows the learner to se-
guentially decide whether to accept or reject a single query
This paper will address pool-based queries.

There are two primary contributions of this paper. Firgs it

cantly reduce the need for labelled training data. an attempt to clarify the issues in HMM active learning, as

there are many heuristics currently being applied. Second,
we provide efficient algorithms for each (save one) of the
objective functions introduced, and believe the algorghm

In machine learning applications, the quality of learnedfor cost-based state active learning and path learning to be
concepts are often limited by the amount of data availableNovel and relevant to other graphical models.

because in the real world data is finite and often expen-

sive to aquire. One solution to this problem is to have thel.1. Hidden Markov Models (HMMs)

learner explicitly compute the value of each potential piec : ' s
of data, and only ask for the most informative data (Coh An HMM is defined by the parametéy which is a tuple of

ki t A, b, andp;.
et al., 1994). A central question in active learning, then, i ve parameters, O, A, b, andpy

how to define value of information. A simple definition is § is thestate spacea set ofN states{1,...,N}.

used byuncertainty samplingwvhich prefers queries whose O is theobservation space set ofT symbols{1,...,M}.
label the learner is unsure of (Lewis & Catlett, 1994; CohnA is the N x N transition matrixwhere element; =
et al., 1995). This has the drawback of not explicitly ac-P(S+1=j|S =i)

counting for sample variance, so the learner may find it-B are theoutput probabilitiesn whichbj(0) = P(o|S=1)
self fascinated by label noise containing no information. Ap1(Sy) describes & x 1 initial state distributionat time 1.

mo]rce rolgust ?pproaf:r;"mje_rytby C_I(_)r:nm'Tte@tﬁC)’ Wh'cth. A sequence of hidden statd$= {S,S, ..., Sr } produces
prefers “controversial” points. e algorithm maintains sequence of observatior®,— {O1,0,,..,Or}. From

a population of models, and selects queries that engend ;
the most disagreement among these models (Seung et aﬁl%ablner, 1990), the vectors B, andy make themselves

1. Introduction

Appearing inProceedings of the 24 International Conference on
Machine LearningBonn, Germany, 2005. Copyright 2005 by the
author(s)/owner(s).
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useful, as well as the matricés

o [i] = P(O}, & =i[6) (1)

Beli] = P(O1|S =1,6) )

wli] =P(5 =10,8) 3) Figure 2.State active learning vs. path active learning. This is
&li,j]=P(& =i,5+1=j|0,6) 4) ' ' '

an example three-state HMM evolving over 10 time steps from
. left to right. The connections between states represenorhe
where OIk IS th? subsequenc€Qy, Oy, - - ’_Okfl’ok}' possible transitions that are consistent with the obsienst but
The vectory will be referred to as thevelief stateat  yhe trye states are not known. Actistatelearning would prefer
t|me t. The be“ef State InCOI’pOI’ateS a” the Observanon%ny of time Steps 4_10, as knowing the state of any one of them
O and summarizes the probability of each state at time will disambiguate the last 7 timesteps. However, only 1 it o
These quantities are obtainedd(T N?) from the Forward-  information is learned in that case, i.e., whether the uppawer
Backward algorithm. The following will also prove useful path was taken. Activpathlearning would prefer time step 2, as

in Section 4: up to log 3 hits can be learned from it.
Rli,j] = P(S+1= ]IS =1,0) = &li, jl/wli] (5) _ _
Rli,j] =P(S_1=|S =i,0) = &_a[i. j]/w[i] (6) Figure 1 shows the dependencies am8n@, andQ. The

values of allQ; are hidden until a query allows the learner
Note that there ar@ different Rk and R, matrices. They to see a particular value. In the activity recognition task,
are identical to the transition matrx except they areon-  for instance, there is one query variable per time step, the
ditioned on the observationsA hidden Markov model is  value of which is the answer that the user would give to a
equivalent to an inhomogeneous Markov chain uinigr ~ “what are you doing?” query. A que is a flexible rep-

forward transition probabilities. E.g41 = R\t. resentation that can specify the result of a labelling,, e.g.
“an expert classification of the state at titieor a test of

some kind, e.g., “the result of a measurement at titne
while also allowing the tests to give indirect, ambiguous,
Suppose that we are learning an HMM to recognize huand/or noisy results. Queries that give the exact stateyalu
man activity in an office setting. The observations comeas in (Scheffer et al., 2001; Tur et al., 2003), are modelled
from various sensors that can measure the user’'s motiotiyhenbj(i) = 1.

sound levels, keystrokes, and mouse movement, and th§ a1y costs are optionally specifiable; a cost function
hldden st.ate is the actlvn)_/ thatthe useris e_ngaged in (JmeeE(Q[’ S.t) can depend on the type of query, the true under-
ing, email, word processing, reading, coding, etc.) As th§y;ng state of the system, and the timestep. The framework
HMM’ you are allowed to ask tr_'e user a handful of ques-;, 'y, 5 support many types of cost-sensitive learning. In
tions once per week such as

_“m?t,t]is scene from 4:02pmy, o activity tracking example, true/false queries may cost
Wednesday, what were you doing?” We also assume a nofjsqq han asking the user to choose from a list, and query-

omniscient labeller, so some noise in the labelling proceSﬁ]g about recent events may be less annoying (cost less)
should be modelled. At the end of the week, which timethan asking about distant events

steps are most profitable for querying?

2. HMM Active Learning Framework

The active learning HMM is equivalent to a standard HMM 2.1. HMM Tasks
with one difference, some observations are hidden an

queryable. Denote b@ a hidden observation at tinte 9|MMS have two sets of latent variables, the parameters

© and the hidden statd3, and the loss function for state
learning is further determined by whether one is interested

oy O E i i in the hidden states on a state-by-state basis or the segjuenc
as a whole (see Figure 2.) The active learning framework

{s} can be applied to all three objectivé&tate Learningorre-
sponds to tasks where the goal is to maximize the number

Q} é g g of correctly labelled states. Applications of this type eom

monly occur, for instance, in biological sequence labgllin
Figure 1.Example HMM active learning task. The learner can Where the distribution over individual states is more ukefu
choose to observe a query of any time step. The unshaded nod#san finding the single most likely patRath Learninghas
are the hidden statds }, the shaded nodes are the visible obser-the goal to find a single maximum likelihood path of hid-
vations{Ot }, and the patterned nodes are hidden-but-queryablejen states. These tasks occur when the sequence of states
query observation§Q; }. must be considered as a whole, such as in text and speech
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recognition. Model Learning/Discriminatiorattempts to Table 1.Loss functions used.

minimize co_nf.usfion a_bout which rr?c_)del_generated th_e data. Information Cost

Note that thIS is identical to th_éa_ssmcatlortask, in which Model E) N CEDRCEE
the objective is also to discriminate between models that 5 H() 15 .P(10?

may have generated an observation sequence. Itis also reIStates S H(S) EE 2 NP(S =15,

evant to quantifying disagreement in QBC.

3. Loss Functions distribution. This is identical to using Shannon entropy,
In active learning, the loss function is determined by whatSiNce theexpectatiorof AH andKL are identical (Mackay,
one dislikes about one’s current belief state. The form of1992). So

the loss function id.(p), wherep are the beliefs, in this Ch) — _
case, the joint distributiop(X, ©) between the hidden vari- VOIQp) = H(X) ~H(X|Q) (11)
ableX and the mode®. There are many loss functions to = Eq[KL (p(X)l[p(X]a))] (12)

choose from, but o types are common: 1) uncertamtyand note that they are both equivalent to the mutual infor-

about the hidden variable, and 2) expected error on a tas'?nation betweerX andQ, since by definitiorMI (X; Q) —

We will refer to these as entropy-based and cost-based_lo:?_?(x) —H(X]|Q). This entropy-reducing objective function

functions. In either case, we define the_z value of.lnformatloq1615 alarge body of supporting theory. Query by Committee

as the expected reduction in loss oes known: is a Monte Carlo approximation to entropy minimization,
VOI(Q; p) = L(p) — Eo[L(p|Q=q)] (7) andhas been proven to exponentially reduce prediction er-

ror in number of queries (Freund et al., 1997).

This is the expected loss reduction if we simply observe

Q. However, once a loss function is defined, we can als® 2. cost

useL(p|Q = q) to evaluate the gain to be had franter- . o )

ventionswhereQ is deliberately clamped to some value !N many instances, however, entropy is inappropriate. The

g, as in (Tong & Koller, 2000; Steck & Jaakkola, 2002). €ntropy criterion places equal value on mformgnon gained

However, one would need to ensure that only nodes thzabout all parts of the version space, but one is often only

are “downstream” of the intervention are measured. interested in specific areas. The costs of confusing some
states may be far different than for others, for example,

the cost associated with confusing a medium-priority and a
low-priority email will be different from confusing a high-
The first objective minimizes entropy, and the correspondpriority with a low-priority email. These misclassificatio
ing loss functions can be found in the first column of Ta- costs can be specified by a cost ma@jin whichc;; is the

ble 1. For example, if we wish to select@ to learn  cost of mislabeling clasisas clasg.

the most about some hidden variablewe would choose L . e .
the query that maximally reduces the expected Shannoh'a classification, the true misclassification cost is

¢ foX). A i | functior(p(X)) — rgmaxP(x) = X*]cxx+ wherel[-] is the indicator func-
ﬁu%?%l) (i)mz(lie)s n entropy loss functiorl.(p(X)) tion, x* is the true label, and;; is the cost of confusing

labeli for j. This cost will be the same whether the clas-
VOI(Q;p) =H(p(X)) —Eq[H(p(X|Q=q))] (8) sifier had 100% confidence or 51% confidence in its an-

3.1. Information

=H(X)-H(X|Q) 9) swer. Since HMMs prqduce prqbal?mstlc estimates of state,
—H H (OIX 10 we will use the extra information in a margin-based cost
=HQ=R@X) (10)  function where the true cost for a particular labelling will

Recall that the entropy of a distributiop over x is P& 3xP(X)cxx. Taking the expectation over gives the
H(X) = — 5, p(X)logp(x), and that the conditional en- Bayesrisk

tropy H(X|Q) = 34 P(d) 3x p(x|q) logp(x|q). Equations 9 _ P = e
and 10 are equivalent by the symmetry property of mutual L(p) = IZ;P(X =P(x=j)Gi (13)
information.

. . . . In contrast to entropy, this loss function is pairwise deeom
This is in fact equivalent to another information-based : . !
posable, which will make some computations far more ef-

measure u_sed In active Iearnmlgl_,lllbeck_-Le_lbIe_r diver- ficient. The second column of Table 2 lists the cost-based
gence This measures change in a distribution, where

! loss functions we will use.
KL (p1f[p2) = FwP1(W)logpa(w)/pa(w). With KL, the
objective is to choos® such that the posterior over one’s In cost-sensitive learning, the queries themselves mag hav
beliefs is expected to diverge maximally from its currentdifferent costscostQ, S,t), which can depend on the type
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of query, the underlying state gtand the timestep. Be- As before, this allows for weighting different errors sepa-
ing able to optimally weigh query costs versus misclassitately. The loss function is the confusion risk
fication risk is desirable in many real-world settings. The

entropy objective is less suited to these applications. N

N
SYPS=DPG =)  (17)
J

L(p) =

M-

Once the loss function has been calculated, the active-learn
ing task becomes finding the optim@F such thatQ* = T
argmax, VOI(Q) + Eq[cost(g)]. In what follows we will = Z%C% (18)
omit observation costs for clarity, as they are straightfor t=

ward to include. where the apostrophe indicates transpose. The difficulty

occurs when we compute the consequences of observing

4. State Active Learning a query; the information can propagate to all of the other

. . ..., states, changing each of their contributions to the total.
HMMs are often used to pr_obab|llst|cally label individ- Thus, for each possible value of each potential query we
ual states, where the goal is to get as many states COp, st 4o two things, 1) propagate the changed state beliefs
rect as possible, as opposed to guessing the single corregl o< o)l time steps, and 2) recalculate Equation 18. As
path. This inference problem typically uses the Forward-yascribed this would be aD(T2N2M) operation.
Backward algorithm (Rabiner, 1990). An example appli-
cation is estimating which parts of proteins correspond toSuppose, for example, we only evaluate one possible out-
certain types of structures (Durbin et al., 2000). We will come of seeing one quer§,, the query at = 1. If we
describe two types of loss functions for the state learningbserve thaQ; = q, the total loss is defined to be
task: information-based and cost-based.

T
4.1. Information-based (PIQ1=a) t;\/t\leq YiQi=q (19)

This performance metric occurs when minimizing SummedNaiver we would need to recalculate afl for each

state entropies. As mentioged, the statewise entropy 10Sgnestep before recalculating (18). Recalling Equation 5,
function is the sunk.(p) = 3;_,H(S[O). So the loss re- o can write (19) as

sulting from a particular query valugat timet is

T L(p|Q1 = a) = Yyjq,—¢CV1i1=q (20)
L(p|Qt=0q) = kle (& =0q) + (F1V1\Q1:q)/C(F1V1\Q1:q)
L . . + (F2F1y1/Q,=q) C(F2F1Yi/Q,=q)
= D> Wa—qlllogWa-qlil  (14) .

k=1

..-F _YC(F+---F _
which can be evaluated using (P Fiyiou—o) C(Fr -+ Faaior—o)

o i _ and gather all the matrix terms into a single makixsuch
yt‘Q‘:q[l] P& I|O’Ql_ 9 ) that the total losn terms ofy; is
P(Q=0dS=0)P(&=i)/P(Q)
bi(Q)w i/ D bi(a)wi] (15) L(PIQ1 = ) = Y1 10,-qM1Y1jQ,=q (21)

thus we can usé; to determine the total effect of any

Note that (14) and (7) imply change in beliefs d@t= 1 by a single matrix multiplication,

T reducing complexity by a factor &f. We want to be able
VOI(Q) = ZH (S) —H(SIQ) (16)  to do this for all time steps, so we ne&dnatricesvi
=
However, computing expected entropy reductioncanbeex- . . . < 3 U e e
pensive because (14) must be recompuitdd times per Me[i, i] = ZZZP(‘Q‘“ =Ul§ =)P(S=VIS = j)Cw

round of query selection. The result is cost quadratic in the (22)
number of timestep®(T2N?M).

to clarify a bit further, define
4.2. Cost-based

The cost-based objective function measures the expected Fict = AR R 2R for >k (23)
misclassification costs summed over the individual states. Rk—1 = RIR-1--- R 2R 1R« for I <k (24)
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then eachM is conditional entropyH (Q|) appears just as difficult as
1 T (32). Except we can now exploit the conditional indepen-
My = Z R!_,CRi_k+C+ Z F._CF (25) dence betwee) andll giveng, so
= = VOI(Q) =H(Q) —H(Qs) (34)
These useful matrices can be calculated efficiently using =H(S)-H(S|Q) (35)
dynamic programming. We can calculatk matricesM; o )
at once inO(TN?). Compute the following recursively which is now easy to compute, knowing
N
f . .
M; =0 (26) H(QIS) =) P(S =)H(Q[S =1) (36)
M§=C (27) N
M{ =F/(M/ ,+C)R 2<t<T (29 = 2wl Y bildloghiK (37)
MP = RI(M{_)R +C T-1>t>1 (29 '

¢ b So the cost for path active learning with entropy is just
My =M, +M; 1<t<T  (30) O(TNM). Note that (34) is illuminating on at least two
points: 1) the first term is a selection criterion for uncer-
gtainty sampling, so the nonoptimal behaviour of uncer-
L(p|Q =q) = Vt\Qt:thyt\Qt:q (31) tainty sampling can be traced to ignoring the conditional
entropy, and 2) in the special case where queries corre-
andVOI can now be computed directly from (7). Note spond to a noiseless state label, as in (Scheffer et al.,;2001
that the cost of the recursion (26)-(30)0¢TN?), and the  Tur et al., 2003), the second term in (34) is always zero, S0
cost of computing expected loss for all queries from (31) isstate-entropy uncertainty sampling is the optimal entropy
O(TN?M). based strategfpr path active learning

Now one can compute expected loss for each query usin

_ ] An advantage of entropy in general is that a closed form
5. Path Active Learning expression for many continuous distributions exists. Gaus

. . . sians are one example, so active learning using entropy can
Another common HMM task is to find the most likely be exact for HMMs \E)vith Gaussian outpu?s 9 Py

pathof hidden states given some observations. Sometimes
called decoding, this differs from the state estimatiotk tas
in that one is trying to learn about the distribution of the5'2' Cost-based

whole sequenceR(IM), instead of trying to maximize the The goal of active path estimation here is to find the query
number of individually correct states. It may be, for in- @ that minimizes the expected cost among paths. Because
stance, that the individually most likely states togetbenf  enumerating misclassification costs for every possible pai
an impossible path. Examples where decoding is used irof paths is not obviously practical, we will use equal-cost
clude text/speech processing, deducing human activitiesess here. Note, however, that other weighting schemes are
and extracting likely trajectories from images. The Viierb possible, such as weighting by state or by time step. The

algorithm is typically used in these inferences. loss function is thus
. (1
5.1. Information-based L(p) = z ZP(W)P(”J')l fi # ]
The entropy-reduction objective function for this task is bl ,
L(p) = H(M|O). We can directly maximize our value of =1- ;P(T[) (38)
LS

information via (9), i.e.,

where the indicator functioH-] takes the place of the cost
VOI(Q) =H(M) —H(M|Q) (32) matrix. The summation in Equation 38 is over the entire

By definition, H(1) = ¥P(m)logP(1), which is a sum- SPace of paths, which hi§" members. This seems daunt-

mation over the entire path space. We can avoid a dired'9: but dynamic programming again offers a solution. In

2 )
attack on the sum by noting the symmetry property of mu-fact, the sum can be calculatedd(T N“) for all Q;. Define

tual information, which enables us to wrieOl as T vectorsjy such that
0 2
VOI(Q) = H(Q) —H(Q|M) (33) M[I]—H;P(qu_ﬂ

The entropyH (Q¢) can be computed directly froi(Q), IThere are many measures of uncertainty aside from entropy:
which can be obtained from andb(Q:). However, the variance, margin, and confidence intervals have all beeth use

(39)
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We can compute ajk by the following recursion: and we can directly calculate
W—1 @)  PQ=de-m-3b (™[] (49)
b
=1 41 .

g f @ PQ=0) =Y PO=m Y biay"fi]  (50)
k= (ROR)K 1 2<t<T  (42) m '

W= (ROR)MK, T-1>t>1  (43)  p(o)isour prior over models ang™[i] = P(S = |6 = m).

f b
He=He Ok 1<t<T  (44)  The value of informationy OI(Q), for model learning can

be directly computed from either (46) or (47). If a closed
where® is the Hadamard operator which indicates ele-form expression exists for the entropy pf@) or p(Q),
mentwise multiplication, e.g., thg-th element ofA© B then use (46) or (47), respectively. However, one of either
is &jbjj. The loss resulting from any possible query obser-g or Q, must be discrete, whether intrinsically or by sam-

vation is simply pling. Posterior discributions over HMM model parameters
are derived in (MacKay, 1997; Rezek & Roberts, 2002).
L(pIQt =) = 1— (Vg © Vjq) 1t (45)  The cost of one round of selection®T N?M|@)|).

Now we can calculat® OI(Q;) for any Q; by (7). The 6.2. Cost-based

cost of calculating/Ol for all queries is linear itT, i.e., ) ) )
O(TN2 + TNM). If the space of models has different costs associated with

different types of model-selection errors, then a cosetlas
. . e criterion may be more appropriate than entropy. Minimiz-
6. Model Active Learning/Classification ing model misclassification error will use the loss func-

tion L(p) = 3; ¥ P(6i)P(8j)cij whereC is a cost matrix

in which ¢;; is the cost of guessing modeWwhen the true
model isj. To calculatd, defineT matricesNx where

Model learning is a central task of HMM inference. The
loss function is meant to allow the learner to minimize
confusion about which model generated the data. How
ever, this is identical to thelassificationtask, in which Nfi, j] =3 3 P(O=u[Sc=i)P(0=V|S= j)cw (51)
the objective is also to discriminate between models. Thus ’ &4

the following loss functions are appropriate for both model

learning and classification. In QBC, the sp&is the com-  noting that

mittee for that iteration. In classificatio® is the space (M) 150 — |

of competing models under consideration. Note that in PO=mS=i)= w (52)
both the following algorithms, the competing models do ZkVt( )[i]P(G: k)

not have to have the same number of states, so active modﬁl hel ; . b i lculated b
selection is possible. ow the loss function can be easily calculated by

L(PIQt = a) = Vg —qN V=g (53)

Note that we can change Equation 51 to be conditioned on
the value ofQ; instead ofS, which enables active learn-
ing of models with different numbers of states. The cost
for evaluating all queries is linear in the number of time
€ steps:O(TN2M|O|2). The cost is quadratic in the number
of models only if we want to specify every possible model
confusion, however, if only relative importance of the mod-
VOI(Q) =H(©) —H(e|Q) (46)  els needs to be included, the cost is lineaj@has we can
=H(Q) -H(Q|9) (47)  use the loss functioh(p) = 1— 5; P(6 = i)°wi, wherew;
is the weight of modeéil.
for the first, (46), the first term is independent of what
query is selected and can be ignored. The second term t ;
H(GIQ) - 54P(Q) oP(6la)logP(Bla), whereP(8ig) can |+ XPeImeNts
be obtained from Bayes rule. For the second equation, In this section we empirically investigate the algorithm’s
performance in simulation and on an activity recognition
H(Q|O) = Z P8 =m)H(Q|8=m) (48) task. The simulation experiments were conducted by gen-
m erating random HMMs with 5 states and a single output

6.1. Information-based

We wish to select the quer®; to minimize model uncer-
tainty, so the loss function will be(p) = H(p(©|0)). As
in Section 5, we can directly maximize our value of in-
formation by maximizing mutual information, but now w
have two equivalent ways to do so:
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having two possible symbols. The query variables returned 03 ‘ T random
a noisy state estimate, .6 = § 50% of the time and o ggg;tgg{ejd"'v““&
a random state otherwise. Each HMM was then used

to generate an observation sequence of 100 time steps. 02
The performance on each task was compared with random
guery selection and uncertainty selection, which selected
the query attached to the state with the greatest entropy.
Note that the entropy criterion could be made to perform o1
arbitrarily worse than the cost criterion by an asymmetric
cost matrix, however, in these experiments the cost is 0/1. 200 400 600 800 1000

num queries

error

;t}?\tlee I:g:gg? L?tzrlev%?ceg \i,'\tlizss”t(i)%vzt(ixtjotzzlesi;;ngr(())kk)Ja(f_igu_re 6.state active learning for activity tracking. First 1000
bilities. Performance was measured as classification errof- o <>

over states, + 3, P(S = §0,6*). Due to computational

costs, the entropy-based version of state active learnasg w

omitted. “0/1 Cost” refers to the cost-based VOI funCtionresults are shown in Figure 6. VOI-cost was the best per-
with an equal-cost cost matrix. The results are in Figure 3¢5 o in the first 1000 (5%) of the queries, after which
Cost-based VOI did uniformly better than random and un'uncertainty sampling caught up.
certainty samplingPath Learning:Performance was mea-

sured as the negative log probability assigned to the single

true underlying path;-logP(M*|O,6%). Figure 4 has the 8. Related Work

rgsults. For this example, the entropy-based VOI objecyy application of active learning to general graphical
tive was best, closely followed by cost-based VEIbdel ., 4eis has been addressed in (Tong & Koller, 2000; Tong
Learning: For each run, a random HMM was used t0 gen-¢ e, 2001; Steck & Jaakkola, 2002) in which con-
erate a training sequence and a test sequence, each of 100 e queries are used where variables are clamped
observations. After each query is selected and observegl \5;e assignments. The application of active learning

from the training sequence, a new maximum likelihoodgye ifically to Hidden Markov Models has seen previous
model, 6, is learned via Baum-Welch. The performance gyention from the speech and text processing fields. These
metric is the classification error in the test sequencegusing o roaches have been implementations of both uncertainty
the same metric as in Figure 3. Since the objective functiogamp“ng (Scheffer et al., 2001; Tur et al., 2003) and QBC
for m(_)del learning requires a population of models,_in this(-l-ur et al., 2003) methods applied to the model learning
experiment a population of size 3 was generated via pargzqy - optimahonmyopicsets of noiseless queries are de-
metric boptst_rap fron® from the previous |’Ferat|on. Re- scribed by (Krause & Guestrin, 2005) at a cost cubic in the
sults are in Figure 5. In this small simulation, cost-baseqmper of time steps. The stream-based state active learn-

and entropy-based VOI performed equally well, and both, ohlem has been addressed with POMDPs by (Krish-
were superior to random sampling. namurthy, 2002).

The algorithm was also tested on an activity recognition

task. The time series was a sequence of 20,000 keystroke€s Discussion & Future Work

from a user, where the observations were the key cat-

egory (alphanumeric, punctuation, symbol, space, entedhe VOI computations are fast enough that incorporat-
control/alt, backspace, or arrow key), the duration of theing the information learned from the queries into the
keypress (msec), and the transition time to the next keyIMM'’s beliefs becomes the primary bottleneck, especially
(msec)_ The underlying state was the type of applicatioﬁn model Iearning. Future work will address the design of
the user was typing in (email, coding, writing paper, shell,new learning algorithms that can quickly incorporate new
or other.) All observations and states had been automatHueries, such as in online learning (Minka, 2001).

cally recorded and a model had been learned before the e(fomputingVOl can be made even faster by only updating
periment. The states were then hidden from the learner angle \ariaples that are affected by information learned from
the task was to classify as many states correctly as possiblg,q |55t guery. This is possible since changes beliefs expo-
The ‘?"QQ“thr,“ was allowed to requesfc queries for any tIr.nenentially decay in its effects as the distance along thexchai
t, which in this case returned the application that was bemgncreases (Boyen & Koller, 1998). Thus, after the compu-
used (the state). Random sampling, uncertainty Sampl'm:lation for the first round of query selection, computation is

and VO"COSF s;mpl;}ng were run on the data. VOII'entrOpKthereafteconstamw.r.t. the length of the sequence, as long
was not applied as the computation cost was t0o large. Thgg o arhitrarily small amount of error is permitted/io.
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10. Conclusions Lewis, D. D., & Catlett, J. (1994). Heterogeneous uncetyain
sampling for supervised learningProceedings of ICML-94,

This work describes the problem of active data selection 11th International Conference on Machine Learn{pg. 148—

for the HMM tasks of model learning, state learning, and 156). New Brunswick, US: Morgan Kaufmann Publishers, San

path learning. Two families of myopically optimal objec- ~ Francisco, US.

tive functions have been described for three inferencestaskyackay, D. (1992). Information-Based Objective Functiéms

as well as fast algorithms for evaluating them. Empirical Active Data SelectionNeural Computatiopd, 589-603.

studies have demonstrated the improved performance of a||\7|

gorithms using these active learning methods acKay, D. (1997)Ensemble learning for hidden markov models

(Technical Report). University of Cambridge.

Minka, T. (2001). A family of algorithms for approximate
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