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Abstract
We consider reinforcement learning in systems
with unknown dynamics. Algorithms such as
E3 (Kearns and Singh, 2002) learn near-optimal

algorithms guarantee that near-optimal performance will
be obtained in time polynomial in the number of states of
the system. The basic idea & is that it will repeat-
edly apply an “exploration policy,” i.e., one that tries to

visit state-action pairs whose transition dynamics até sti
inaccurately modeled. After a polynomial number of it-
erations, it will deem itself to have modeled enough of
the MDP accurately. Then, it will apply an “exploita-
tion policy,” which (given the current MDP model) tries
to maximize the sum of rewards obtained over time. In the
original E2 work (Kearns & Singh, 2002), the algorithm
would explicitly use an exploration policy until the model
was considered accurate enough, after which it switched
to an exploitation policy. In later variants such as (Braf-
man & Tennenholtz, 2002) this choice of exploration vs.
exploitation policy was made less explicitly, but through a
reward scheme reminiscent of “optimism in the face of un-
certainty,” (e.g., Kaelbling, Littman & Moore, 1996). How-
ever, the algorithm still tends to end up generating (and us-
ing) exploration policies in its initial stage.

To achieve its performance guarantees, Befamily of
algorithms demand that we run exploration policies on the
unknown system until we have an accurate model for the
. entire MDP (or at least for the “reachable” parts of it). The
1. Introduction strong bias towards exploration makes the policies gener-

The Markov Decision Processes (MDPs) formalism pro-ated by thefz?-family often unacceptable for running on
vides a powerful set of tools for modeling and solving con-2 real system. Consider for example runnifigon an au-
trol problems, and many algorithms exist for finding (near)tonomous helicopter. This would require executing poicie
optimal solutions for a given MDP (see, e.g., Bertsekas &hat aggressively explore different parts of the statespa
Ttsitsiklis, 1996; Sutton & Barto, 1998). To apply these including parts of it that woult_j lead to crashing the heli-
algorithms to control problems in which the dynamics arecoptert As a second example, if the system to be controlled
not known in advance, the parameters of the MDP typicallyiS & chemical plantiZ®-generated policies may well cause
need to be learned from observations of the system. an explosion in the plant through its aggressive explonatio

A key problem n leaing an MDP' parameters is thar2]1° €11 alo space. Despie e tong heorte)
of exploration How can we ensure that all relevant parts ' y PP '

X 3% . .
of the MDP are visited sufficiently often that we man- beheye thats |saprac_t|cal algorithm. _ _ _

age to collect accurate statistics for their state tramsiti [N this paper, we consider the apprenticeship learning set-
probabilities? The state-of-the-art answer to this proble ting, in which we have available an initial teacher demon-
is the E3-algorithm (Kearns & Singh, 2002) (and vari- Stration of the task to be learned. For example, we may
ants/extensions: .Kearns & Koller, 1999; Kakade, Kearns YIndeed, in our work on an autonomous helicopter flight, our
& Langford, 2003; Brafman & Tennenholtz, 2002). These st crash occurred during (manual flight) exploration, when a hu-

— . nd . man pilot was over-aggressive in exploring the boundaries of the
Appearing mProce_edlngs of the2™* International C_onference flight envelope (moving the control sticks through their extreme
on Machine LearningBonn, Germany, 2005. Copyright 2005 by ranges), which placed excessive strain on the rotor head assembly
the author(s)/owner(s). and caused it to disintegrate in mid-air.

policies by using “exploration policies” to drive
the system towards poorly modeled states, so as
to encourage exploration. But this makes these
algorithms impractical for many systems; for ex-
ample, on an autonomous helicopter, overly ag-
gressive exploration may well resultin a crash. In
this paper, we consider the apprenticeship learn-
ing setting in which a teacher demonstration of
the task is available. We show that, given the
initial demonstration, no explicit exploration is
necessary, and we can attain near-optimal per-
formance (compared to the teacher) simply by
repeatedly executing “exploitation policies” that
try to maximize rewards. In finite-state MDPs,
our algorithm scales polynomially in the num-
ber of states; in continuous-state linear dynami-
cal systems, it scales polynomially in the dimen-
sion of the state. These results are proved using
a martingale construction over relative losses.
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have a human pilot give us an initial demonstration of heli-or expert demonstrations (called apprenticeship learning
copter flight. Given this initial training data with which to also imitation learning, and learning by watching) in vari-
learn the dynamics, we show that it suffices to only execut@®us ways for control. Schaal and Atkeson (1994) and Smart
exploitation policies (ones that try to do as well as posgsibl and Kaelbling (2000) both give examples where learning
given the current model of the MDP). More specifically, we is significantly faster when bootstrapping from a teacher.
propose the following algorithm: Their methods are somewhat related in spirit, but different
in detail from ours (e.g., Smart and Kaelbling, 2000, uses
1. Have a teacher demonstrate the task to be learneghodel-free Q-learning, and does not learn the MDP para-
and record the state-action trajectories of the teacher'meters), and had no formal guarantees.

demonstration. Other examples include Sammut et al. (1992); Kuniyoshi,
2. Use all state-action trajectories seen so far to learn #haba & Inoue (1994); Demiris & Hayes (1994); Amit
dynamics model for the system. For this model, find& Mataric (2002); and Pomerleau (1989), which apply
a (near) optimal policy using any reinforcement learn-supervised learning to learn a parameterized policy from
ing (RL) algorithm. the demonstrations. In these examples, neither the reward
3. Test that policy by running it on the real system. If the function nor the system dynamics need to be specified since
performance is as good as the teacher’s performancé Policy is learned directly as a mapping from the states to
stop. Otherwiseadd the state-action trajectories from the actions. This approach has been applied successfully in

the (unsuccessful) test to the training,seid go back @ variety of applications, but may require careful selectio
to step 2. of an appropriate policy class parameterization, and gen-

erally lacks strong performance guarantees. Abbeel and

Note that the algorithm we described uses a greedy pOIiCKlg (2004) uses the demonstrations to remove the need for

W'.th respect to the current est|m§1t(_ad model _at every Iter'explicitly specifying a reward function; there, the system
ation. So there is never an explicit exploration step. In

. N - : namics were assumed to be known.
practice, exploitation policies tend to be more benign, anddy o »
thus we believe this is a significantly more palatable algo!" What follows, we prove that, with high probability, our

rithm for many applications. For example, unlig, this algorithm given above terminates with a policy whose per-

is a procedure that can much more safely and confidenti{Prmance is comparable to (or better than) the teacher. In
be tried on an autonomous helicopteEurther, if we are he case of discrete state MDPs, the algorithm scales at

designing a controller for a client and each experiment conMost polynomially in the number of states. In the case of
sumes a non-trivial amount of time/resources, we believdN€arly parameterized dynamical systems, we use a mar-
it is much more palatable to tell them that the next IOO|_t|ngale over relative losses to show that the algorithmescal
icy we try will represent our best attempt at solving their & most polynomially in the dimension of the state space.
problem—i.e., an exploitation policy that represents ourDue to space constraints, most proofs are omitted from this
current best attempt at controlling the system—rather thapaper or given only as sketches. The complete proofs are
that we will be repeatedly running expensive experimentsgiven in the full paper Abbeel and Ng (2005).

to slowly gather more and more data about the MDP. 2. Preliminaries

We note that the algorithm proposed above also parallelsz Markov decision process (MDP) is a tuple

reasonably common practice in applied control, in which X _

some initial policy is used to collect data and build amodeI(S7 A’fT’ H.’D’ﬁ)‘ Wh;re_s '?a set of s'gatesel 'S af
for a simulator. Then, if subsequently a controller is foundSet © actlp_ns Inputs; . {P(]s,0)}sa IS a set o
that works in simulation but not in real-life, the designer State transition probabilities (herd(-|s,a) is the state
tries (usually manually) to adjust the simulator to make itiransition distribution upon taking action in state s);

correctly predict the failure of this policy. If machine tea H IS the hOfTZg' tlmessolf) t_he I\gI_DP,_bso_ that the MDP
ing is used to build the simulator, then a natural way gol€fminates alted! steps, D) is a distribution over slates

modify the simulator after observing an unsuccessful poI-from which the initial state, is drawn; andi? : 5 — R is

icy is to add the data obtained from the unsuccessful pOliC);hedrebwar% fléngtion, which W? assume to be non—?egative
to the training set. Thus, our work can also be viewed a&nd bounde )R“{a.’" A POIICY 1S @ mapping from
formally analyzing, and thereby attempting to cast light on statesS to a_l_probablllty _dlstrlbutlon over the_set _of actions
the conditions under which a procedure like this can be exf4' The utility ?; a policy in an MDP M is g|veq by_
pected to lead to a good policy. Uy (m) = E[_Zt=0 R(st)|7_r, M].. nge the expectation is
Previous work has shown the effectiveness of using teacheorver ?” _possmle state trajectories _|n the MIMD )
Specifying an MDP therefore requires specifying each item

“For example, in our autonomous helicopter work, no ex-———— i o
ploitation policy that we have ever used—out of many dozens— 3Any infinite horizon MDP with discounted rewards can be
has ever deliberately jerked the helicopter back-and-forth in the-approximated by a finite horizon MDP, using a horizkp =
manner described in footnote 1. [log., (e(1 — )/ Rmax)]-
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of the tuple(S, A, T, H, D, R). In practice, the state transi- on how often we need to repeat the experiment to see that
tions probabilities!” are usually the most difficult element event at least the desired number of times (with high prob-
of this tuple to specify, and must often be learned fromability).

data. More precisely, the state spatand action space | emma 2. Let anys > 0 anda > 0 be given. Let

A are physical properties of the system being controlledy x ;1™  be IID Bernoullig) random variables. Then for

and thus easily specified? (and H) is typically given by

the task specification (or otherwise can be learned from @ygfices thatn >
teacher demonstration, as in Abbeel & Ng, 2004). Finally,

>, X, > ato hold with probability at least — 4, it
%(a + log §).

D is usually either known or can straightforwardly be esti- 3. Problem description
mated from data. Thus, in the sequel, we will assume thag,o problems we are concerned with in this paper are

S, A, H, D and R are given, and focus exclusively on the

problem of learning the state transition dynaniicsf the
MDP.

Consider an MDPVf = (S, A, T, H, D, R), and suppose
we have some approxirpatid?]of the transition probabili-
ties. Thus,M = (S, A, T, H, D, R) is our approximation

control tasks that can be described by an MDP =
(S,A,T,H,D, R). However the system dynamidsare
unknown. Everything else in the specification of the MDP
is assumed to be known. We consider two specific classes
of state-action spaces and transition probabilities, iatie

will refer to as discrete dynamics and linearly parameter-

to M. The Simulation Lemma (stated below) shows that sdzed dynamics respectively.

long asT is close tol” on states that are visited with high

probability by a policyr, then the utility ofr in M is close

to the utility of = in M. (Related results are also given
in Kearns & Singh, 2002; Kearns & Koller, 1999; Kakade,
Kearns & Langford, 2003; Brafman & Tennenholtz, 2002.)

Lemma 1 (Simulation Lemma) Let anye,n > 0 be
given. Letan MDPV = (S, A, T, H, D, R) be given. Let
M = (S, A,T,H,D,R) be another MDP which only dif-
fers fromM in its transition probabilities. Let be a policy
over the state-action sefs A, so thatr can be applied to
both M and M. Assume there exists a set of state-action
pairs SA,, C S x A such that the following holds

(i) V(s,a) € 57,,, dvar(P(~|s,a),13(~|s,a)) <e,
>

(ii) P({(s¢,az) f:OQSjn|w,M) 1—n.

(Above d.,,, denotes variational distanc®.Then we have

‘UM(W) - U]Q[(ﬂ'” < HzeRmax + nHRmax-

Consider the special case where every state-action pair
(s,a) € S x A satisfies condition (i), in other words,

S A, =5 x Aand thus condition (ii) is satisfied far= 0.
Then the Simulation Lemma tells us that accurate transition
probabilities are sufficient for accurate policy evaluatio
The Simulation Lemma also shows that not necessarily al}1r
state-action pairs’ transition probabilities need to beuac

e Discrete dynamics: The sefsand.A are finite sets.
The system dynamic® can be described by a set of
transition probabilitiesP(s’|s, a), which denote the
probability of the next-state being given the current
state iss and the current action i& More specifically
we have a multinomial distributio®(-|s, a) over the
set of states for all state-action pairés,a) € S x A.

e Linearly parameterized dynamics: The s&ts- R"s
and A = R"™4 are now continuous. We assume the
system obeys the following dynamies:

T = Ad(xy) + Buy + wy, 1)

whereg(-) : R*s — R”s. Thus, the next-state is a
linear function of some (possibly non-linear) features
of the current state (plus noise). This generalizes the
familiar LQR model from classical control (Anderson
& Moore, 1989) to non-linear settings. For example,
the (body-coordinates) helicopter model used in (Ng
et al., 2004) was of this form, with a particular choice
of non-linearg, and the unknown parametessand

B were estimated from data. The process néisg};

is IID with w, ~ N(0,0%I,,). Herec? is a fixed,
known, constant. We also assume thats)|ls < 1

for all s, and that the inputs; satisfy||u|» < 1.8

. Algorithm

rately modeled: it is sufficient to accurately model a subset-et 7 be the policy of a teacher. Although it is natural
of state-action pair§'A,, such that the probability of leav- to think of 7 as a good policy for the MDP, we do not

ing this setSA,, under the policyr is sufficiently small.

assume this to be the case. Let any- 0 be given. Our

Let there be some event that has probability bounded awa§9°rithm (with parameters/r andk) is as follows:

from zero. Suppose we would like to observe that event

SWe chose to adhere to the most commonly used notation for

some minimum number of times in a set of IID experi- continuous systems. I.e., states are represented inputs byu
ments. The following lemma allows us to prove boundsand the system matrices byand B. We use scriptA for the set

Let P(), Q(-) be two probability distributions over a sét,
then the variational distancé...(P, Q) is defined as follows:

d\"dr(P7Q) = % TEX |P(x) - Q(m)|d:v

of actions and standard forit for the system matrix.

5The generalizations to unknows?, to non-diagonal noise

covariances, and to non-linear features over the inpBis({:)
replacingBu.) offer no special difficulties.
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1. Run Ny trials under the teacher’s policyr. Save anya > 0, > 0 be given. Letrr be the teacher’s pol-
the state-action trajectories encountered during thesiey, and letr be the policy returned by the algorithm de-
trials. ComputeU M (mr)—an estimate of the utility fined above. Lelv denote the number of iterations of the
of the teacher’s policyr for the real systemd/—by  main loop of the algorithm until the exit condition is met.
averaging the sum of rewards accumulated in each ofet7 = (H, Ruax, |S|, |A|) for the discrete case, and let

the N trials. Initializei = 1. T = (H, Rmax, ns, 4, ||Allr, || Bl|r) for the linearly pa-
2. Using all state-action trajectories saved so far, estif@meterized dynamics case. Then for
mate the system dynamids using maximum likeli- Un(m) > Uy(rr) —a, )

hood estimation for the discrete dynamics case, and
regularized linear regression for thila linearly parame- N = O(pOIY(i’ %’ 7)) )
terized dynamics case (as described below). Call théo hold with probability at least — 4, it suffices that
estimated dynamicg(®). -

3. Find a«/8 optimal policy for the MDP M) = Nr = Q(pdy(f’f’ﬂ)’ “)
(S, A, 7@, H, D, R). Call this policyr . kio= Q(poly(3,5 7)) (%)

4. Evaluate the utility of the policyr” on the real sys-  Note that Eqn. (2) follows from the termination condition
tem M. More specifically, run the policy ) for k1 of our algorithm and assuming we chodseand Ny large

trials on the system/. Let Uy (") be the average enough such that the utilities of the policigs” }; andmy
sum of rewards accumulated in thetrials. Save the are Sufﬁcient]y accurate|y evaluatedi.

state-action trajectories encountered during these tri.-l.

als he proof of this theorem is quite lengthy, and will make

; _ . _ _ up most of the remainder of this paper. We now give a
5. If Uy (n™) > Uny(nr) — /2, returnn) and exit.  high-level sketch of the proof ideas. Our proof is based on
Otherwise set = i + 1 and go back to step 2. showing the following two facts:

In the i*" iteration of the algorithm, a policy is found 1. After we have collected sufficient data from the
using an estimatd’(” of the true system dynamic. teacher, the estimated model is accurate for evaluating
For the discrete dynamics, the estimate used in the al-  the utility of the teacher’s policy in every iteration of
gorithm is the maximum likelihood estimates for each the algorithm_ (Note this does not merely require that

of the multinomial distributionsP(+|s,a). For the lin- the model has to be accurate after the trials un-
early parameterized dynamics, the model parameters der the teacher’s policy, but also has to stay accurate
are estimated via regularized linear regression. In par-  after extra data is collected from testing the policies
ticular the k" rows of A and B are estimated By {x@}.)

: ) _ () (3) \\2 o . .
argming, ., . > (Trexe — (Ak,: (@ cure )+ Br,tcurr ) ) * + 2. One can visit inaccurately modeled state-action pairs
(| Ak,:lI3 + || Br.:[13), where j indexes over all state- only a “small” number of times until all state-action
action-state tripleg (z., ullh, z$7))}; occurring after pairs are accurately modeled.

each other in the trajectories observed for the system.  \ve now sketch how these two facts can be proved. After
we have collected sufficient data from the teacher, the-state

5. Main theorem action pairs that are visited often under the teacher'spoli
The following theorem gives performance and running time2® modeled well. From the Simulation Lemma we know
guarantees for the algorithm described in Sectién 4. that an accurate model of the state-action pairs visiteghoft

B under the teacher’s policy is sufficient for accurate evalua
Theorem 3. thet in IMDP.IM N és’b“élli[g’gﬂlv_’j?’tf) be tion of the utility of the teacher’s policy. This establishe
given, excepttor Its transition probabiiities. Letthe Sys- (1.). Every time an inaccurate state-action pair is visited

tem elth'er be a dlsqrete dynamics sy;tem ora Imgarly P3e data collected for that state-action pair can be used to
rameterized dynamical system as defined in Section 3. L

%prove the model. However the model can be improved
A policy 7, is an e-optimal policy for an MDP M if only a “small” number of times until it is accurate for all
Uni(m1) > max.Un(m) — €. state-action pairs. This establishes (2.).

8 H : th
We use matlab-like notationi;. . denotes thé™ row of .~ \ve now explain how these two facts can be used to bound

g . .
The performance guarantees in the theorem are stated wn&'h . : . .
respect to the teacher’'s demonstrated performance. However, t 8¢ number of iterations of our algorithm. Consider the

proof requires only that the initial dynamical model be accuratePOlicy 7(?) found in iteration; of the algorithm. This pol-
for at least one good policy. Thus, for example, it is sufficient toicy 7(¥) is the optimal policy® for the current model. When
observe a few good teacher demonstrations along with many bag—— o _ )
demonstrations (ones generated via a highly sub-optimal policy); *°For simplicity of exposition in this informal discussion, we
or even only bad demonstrations that manage to visit good partassumer(® is optimal, rather than near-optimal. The formal re-
of the state space. sults in this paper do not use this assumption.
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finding this policyz(*) in the model we could have chosen Lemma 5. Let any « > 0,6 > 0 be given.
the teacher’s policy. So the poliey?) performs at leastas Assume we use the algorithm as described in Sec-
well as the teacher’s policy in the current model. Now if in tion 4. Let Ny satisfy the following conditionvy >
the real system the utility of the poliey'") is significantly =~ 4096ISPIAIH® Ry 1 32H2Rrgaxls\3\A|_ Then with prob-
lower than the teacher's utility (which is the case as long agpjlity 1 — § we have thatvi > Nr |Uye(rr) —
the algorithm continues), then the model incorrectly pre-y,, (nr)| < a/8.

dicted thatr(") was better than the teacher’s policy. From

(1.) we have that the model correctly evaluates the utilityProof (sketch).Lete > 0,7 > 0. Let SA: C S x A be the

of the teacher’s policy. Thus the model must have evalset of state-action pairs such that the probability of spein
uated the policyr(”) inaccurately. Using the (contraposi- any specific state-action pdis, a) € S A¢ under the policy
tive of) the Simulation Lemma, we get that the policy’ w7 in a single trial of duratiornd is at Ieastﬁ. From
must be visiting (with probability bounded away from 0) | emma 4 and Lemma 2 we have that for grya) € SAg
state-action pairs that are not very accurately modeled. Sgy

when running the policyr”) we can collect training data Vi > Np dyar(P(-|s,a), PO(|s,a)) < e (6)
that allow us to improve the model. Now from (2.) we
have that visiting inaccurately modeled state-actiongpair

to hold with probabilityl — ¢’ — §”, it is sufficient to have

_can_only happen a sm_al_l number of times until the dynam- Np > %( |f€\22 log |§|: +log %) @
ics is learned, thus giving us a bound on the number of ) )
iterations of the algorithm. Taking a union bound over all state-action pdissa) €

SAe (note |SA¢| < |S||A|) gives that for Eqn. (6) to
Hold for all (s,a) € SA¢ with probability1 — |S||.AJ6" —
ﬁS||A|5”, it suffices that Eqn. (7) is satisfied. We also
have from the definition o5 A¢ that P({(ss,as)}L, C

The theorem will be proved for the discrete dynamics cas
in Section 6 and for the linearly parameterized dynamic
case in Section 7.

6. Discrete state space systems SAg¢|rr) > 1 —n. Thus the Simulation Lemma gives us
In this section we prove Theorem 3 for the case of discretéhat
dynamiCS. Vi |U][,1(7‘,) (7TT) - U]LI (ﬂ-T)‘ < H26Rmax + nHRmax-

The Hoeffding inequality gives a bound on the number of 1 a/8 1 a/8 , .
samples that are sufficient to estimate the expectation of °" choose: = 5" 11 = Sy, andd’ = 9" =

a (bounded) random variable. In our algorithm, we wantzjsyay 0 9et the lemma. 0

to guarantee that the model is accurate (for the teacher’s i i
policy) not only when we have seen the samples from thé_.emma 5 shows that, after havmg seen the teacher suffi-
teacher, but also any time after additional samples are cof/€Ntly often, the learned model will be accurate for evalu-
lected. The following lemma, which is a direct conse- ating the utility of the teacher’s policy. Moreover, no late

quence of Hoeffding's inequality (as shown in the long ver-data collection (no matter under which policy the data is
sion), gives such a bound collected) can make the model inaccurate for evaluation of

the utility of the teacher’s policy. l.el/ ., (7r) will be
Lemma 4. Let anye > 0,6 > 0 be given. LetX; be IID close toUy, () for all 4.
k-valued multinomial random variables, with distribution | amyma 6. Let anya > 0,6 > 0 be given. Let
denoted byP. Let P, denote the:n sample estimate aP.

Then formax,,> xdyar (P(-), P (-)) < € to hold with prob- Nubound = 22 max (Jog 4 4
ability 1 — 4, it suffices thatV > £ log £°. 16° B Ry |SPIAL 1o 047 Runsel SP1AL) (g

Lemma 4 will serve two important purposes. In the proofAssume in the algorithm described in Section 4 we use

of Lemma 5 it is used to bound the number of trajecto- 162 2 R?

. . k > max log 8Nubound (9)

ries needed under the teacher’s policy to guarantee that fre L= 202 A .

quently visited state-action pairs are accurately modeled p; > A0%ISEIAIT Ry, 60 256H233nax|5|3|«4\ (10)
(% «

in all models{M()};. This corresponds to establishing B _— : .
Fact (1.) of the proof outline in Section 5. In the proof of Let V denote the number of iterations of the algorithm until

Lemma 6 it is used to bound the total number of times 4t l€rminates. Then we have that with probability- § the

state-action pair can be visited that is not accurately modf°!lowing hold
eled. This latter fact corresponds exactly to establishing (i) N < Nupound, (11)

Fact (2.) of the proof outline in Section'5. (i) Wi=1:N |Uye(mr) — Usi(mr)| < (12)

«

]
UFact (2. follows completely straightforwardly from  (iii) Vi=1:N |Up(7®) — Upr(n®D)] < % (13)
Lemma 4, so rather than stating it as a separate lemma, we will A
instead derive it within the proof of Lemma 6. (iv)  Unm(rr) = Un(mr)| < 5 (14)

v
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Proof (sketch).From Lemma 5 and from the Hoeffding in- more extensively in Section 5, there are two main parts to
equality we have that for Eqn. (12), (13) and (14) to holdthis proof. In Section 7.2 we establish the first part: the
(for all i < Nupouna) With probability1 — g it suffices that  estimated model is accurate for evaluating the utility ef th

Eqn. (10) and Eqgn. (9) are satisfied. teacher’s policy in every iteration of the algorithm. In Sec
Now since the algorithm only exits in iteratiovi, we must ~ tion 7.3 we establish the second part: one can visit inaccu-
have foralli = 1: N — 1 that rately modeled states only a “small” number of times (since
every such visit improves the model). In Section 7.4 we
Uy (7)) < UM(WT) —a/2. (15) combine these two results to prove Theorem 3 for the case

of linearly parameterized dynamical systems.
Combining Egn. (15), (12), (13) and (14) and the fact that

70 is o/8-optimal for M () we get 7.1. Preliminaries

The following proposition will allow us to relate accuracy

of the expected value of the next-state to variational dis-

tance for the next-state distribution. This will be impaitta

for using the Simulation Lemma, which is stated in terms
h of variational distance.

Vi=1:N—1 Uy (r@) > Up(r®) + /8. (16)

In words: when the algorithm continues (in iterations
1 : N — 1), the model overestimated the utility af?).
Using the contrapositive of the Simulation Lemma witl

€= %Hf,éia we get that for ali = 1 : N — 1 the policy  Proposition 7. We have

7(}) must be visiting a state-action pdir, a) that satisfies

dvar(N(,ula Uz[n),N(NQv Uz]n)) < #”/J’l - M2||2'

270

dvar(P([5,0), PO ([s,0) > opfe—  (17)

- From Lemma 2 and 7.2. Accuracy of the model for the teacher’s policy

Lemma 4 we get that if the algorithm had run for a num-Given a set of state-action trajectories, the system nestric
ber of iterationsNupouna then with probabilityl — § all A, B are estimated by solvings separate regularized lin-
state-actions pairs would satisfy ear regression problems, one corresponding to each row of
S (V) N A andB. After appropriately relabeling variables and data,
dvar (P(+|s, a), PP ([s,a)) < aep—- (18)  each of these regularized linear regression problems is of

On the other hand we showed above that if the algorithmthe form

does not exit in iteration, there must be a state-action pair . (i) _ 9T L())2 16112 19
satisfying Eqn. (17), which contradicts Eqn. (18). Thus ming 3, (y SO (19)
Nubound gives an upper bound on the number of iterationsyg 0 g « Rrs+na corresponds to a row i and B, and

of the algorithm. L' the norm bounds on andg () result in||z||» < v/2. The

The proof of Theorem 3 for the case of discrete dynamicsrelabeled data pomlts' are keptin the same order as they w’ere
: . collected. The training data collected from the teacher’s
Is a straightforward consequence of Lemma 6. demonstration is indexed fromto m = NpH. The ad-

ditional training data collected when testing the policies

with probability at least

Proof of Theorem 3 for discrete dynamidsirst note that DN e -
the conditions oV andk; of Lemma 6 are satisfied in 17~ }j—1 iSindexed fromn + 1to7 = Ny H + ki N H.
Theorem 3. So Lemma 6 proves the bound on the numbefh€ data is generated according to a true madegs de-
of iterations as stated in Eqn. (3). Now it only remains toSCibed in Section 4. In the notation of Eqn. (19), this
prove that at termination, Eqgn. (2) holds. We have from the"€ans there is sonte such that

termination condition thal/ (w) > U (7wr) — /2. Now us- .G T (i ;

ing Eqn. (13) and Eqn. (14) we g&t. > Uy, — 3o, which Vi gy =072 + ), (20)

implies Eqn. (2). where the{w(®}; are 11D, withw® ~ N(0,0?). The data

. . . generation process that we just described will be referred
7. Linearly parameterized dynamical systems to as “data generated according to Eqn. (20)” from here on.
In this section we prove Theorem 3 for the case of linearlyNote that the training datge") }; in this setup ar@on-IID.
parameterized dynamics described in Eqgn. (1). As pointedhe teacher’s policyrr induces a distribution over states
out in Section 5, the performance guarantee of Eqn. (2) fola; and inputsu, at all timest. However these distributions
lows from the termination condition of our algorithm and need not be the same for different timgsnaking the data
assuming we choodg and Nt large enough such that the non-l1ID. Moreover, the training data indexed froany-1 to
utility of the policies{=(?}; andr are sufficiently accu- sn is obtained from various policies and the resulting data
rately evaluated in\/. This leaves us to prove the bound generation process is very difficult to model. As a conse-
on the number of iterations of the algorithm. As explainedquence, our analysis will consider the worst-case scenario
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where an adversary can choose the additional training dat@rudely speaking we exploit the fact that no matter how an

indexed fromm + 1 to m.

Forl < k < NprH + kyNH let the following equations
defined® andloss® (6):

loss'™ (6) Sy — 07 20)2 4 L 6]13,

o) argming loss™ (6).

(21)

adversary chooses each additional data pdinias a func-
tion of the history up to timeé — 1, the random walK Z;. }

has a positive bias. More precisely, we use the Optional
Stopping Theorem on the martingalg = exp(525 Zi).*2
Step 3. Let # be an inaccurate parameter. From Step 1 we
have that the optima™* outperforms) by a margirQ)(Nr)
after having seen the initial data poings®, y(®}¥7H.

The following lemma establishes that a “small” number of tepy 2 says that the probability férto ever make up for

samples from the teacher’s poliey is sufficient to guar-
antee an accurate modgF) for all time stepsk = Ny H
toNrH + ki NH.

Lemma 8. Let anyd > 0,¢ > 0, > 0 be given. Con-
sider data{y®, ()} Nt H+FNH generated as described
in Eqn. (20). Let{0*)}, be defined as in Eqn. (21). Let
{g®, 2} be data generated from one trial undey

this margin2( N ) is exponentially small ilV. Our proof
combines these two results to show that a “small” number
of samplesNt from the teacher is sufficient to guarantee
(with high probability) that* has a smaller loss thahin
every iteration, and thug ¢ {9(*)} [t NI

Step 4. Our proof uses a covering argument to extend the
result thaty ¢ {9} Y7 THE N for one specific inaccu-

(and appropriately relabeled as described in paragraphrate ¢ from Step 3 to hold for all inaccurate parameters

above). Then for

P(maxycr.g|0T 20 —0*Tz0| > ) <y (22)

to hold with probabilityl —& for all § € {6} Y7 THR N
it suffices that

NT:Q(pOIY(% a%aH, ||0*H27TLS;TL.A7]€13N)) .

1
n

¢ simultaneously. As a consequence, the estimated pa-
rametersd)(*) throughout all iterationss (NyH < k <
NrH + kyNH) must be accurate. Which establishes
Lemma 8.

Theorem 9. Let anyd > 0,a > 0 be given. Let
{M®}N | be the models estimated throughobt it-
erations of the algorithm for the linearly parameter-

If 0 satisfies Eqn. (22) then it is accurate for data generatetf®d dynamics case, as described in Section 4. Then
under the teacher’s policy and we refer to it as accurate if®" Uy (7r) — Un(7r)| < a to hold for all i

the discussion below; otherwise it is referred to as inaccul
rate. We now sketch the key ideas in the proof of Lemma 8% (poly (3 5

A full proof is provided in Abbeel and Ng (2005). The
proof proceeds in four steps.

Step 1. For any inaccurate parameteémwe establish that
with high probability the following holds

loss M H) (9) > 10ssNH) (6*) + Q(N7). (23)

l.e., the true parameté* outperforms an inaccurate pa-
rameterd by a margin ofQ(N7) after seeingVr trajec-

: N with probability 1 — §, it suffices thatNy =

L2 HaRmaxaHAHF7||BHF7nSanAak17N))-

Proof (idea). From Prop. 7 and Lemma 8 we conclude that
the estimated modefs\/ ()} N, are close to the true model
in variational distance with high probability for statesvi
ited under the teacher's policy. Using the Simulation
Lemma gives the resulting accuracy of utility evaluation.
O

Theorem 9 shows that a “small” number of samples from

tories from the teacher. The key idea is that the expectethe teacher's policyrr is sufficient to guarantee accu-

value of the loss differendess ™) (9) — loss V7 H) (%)
is of order Nt for inaccurated. Our proof establishes the

rate models]\?[i(i) throughout all iterations of the algo-
rithm. An accurate model here means that the utility of the

concentration result for this non-1ID setting by looking at teacher’s policyrr is accurately evaluated in that model,
a martingale over the differences in loss at every step ande.,U ;) (7r) is close toUy (7r).

uses Azuma'’s inequality to prove the sum of these differ-

ences is close to its expectated value with high probability7-3. Bound on the number of inaccurate states visits

Step 2. Let lossgfl)v (9)

k i i
Zi:NTH+1(y( ) —672())? be

the additional loss incurred over the additional data oint

{2} 141 We establish that for anya < 0,

a

P(3k > NrH : loss(];)v(ﬁ) < 10382’3(9*)—@ < exp(—%).

In words, the probability ob ever outperforming* by a
margina on the additional data is exponentially smalhin
The proof considers the random wdlKy, }
(k) 9) — lossgfj)v(e*).

adv

7y, = loss

Based on the online learning results for regularized linear
regression in Kakade and Ng (2005), we can show the fol-
lowing result.

2pefinition(Martingale.) Let(Q, F, P) be a probability space
with a a filtrationFo, F1, - - - . Suppose thaky, X, --- are ran-
dom variables such that for all> 0, X; is F;-measurable. The
sequenceXo, X1, - - - is a martingale provided, for all> 0, we
have that£[ X 11|F;] = X,. Due to space constraints we can not
expand on these concepts here. We refer the reader to, e.g., (Dur-
rett, 1995; Billingsley, 1995; Williams, 1991), for more details on
martingales and stopping times.
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Lemma 10. Let anyy > 0,6 > 0 be given. For References

the algorithm described in Section 4 we have with prob-appeel, P., & Ng, A. Y. (2004). Apprenticeship learning via in-
ability 1 — ¢ that the number of times a state-action verse reinforcement learningroc. ICML

pa}ir (z,u) is (Aen'countered such that(A¢(z) + Bu) —  Abbeel, P, & Ng, A. Y. (2005). Exploration and appren-
(AD¢(z) + BODu)||s > p is bounded byN, = ticeship learning in reinforcement learning.  (Full paper.)
O(k1v/E1 N (log k1 N)3poly(|| Al , || Bl r, ns, na, log %, http://www.cs.stanford.edu/"pabbeel :

H, i)) Amit, R., & Mataric, M. (2002). Learning movement sequences

from demonstrationProc. ICDL
Due to space constraints, we refer the reader to the lon@gerson, B., & Moore, J. (1989).Optimal control: Linear
version for the proof (Abbeel & Ng, 2005). Lemma 10 is  quadratic methodsPrentice-Hall.
key t(_) proving the bound on the number of iterations in theBertsekas, D. P., & Tsitsiklis, J. (1998yeuro-dynamic program-
algorithm. ming Athena Scientific.

. . Billingsley, P. (1995). Probabili dM™m Wiley Inter-
7.4. Proof of Theorem 3 for linearly parameterized iingsley, P. ( ). Probability and Measure Wiley Inter

X science.
dynamical systems Brafman, R. I., & Tennenholtz, M. (2002). R-max, a general poly-
Proof (rough sketch)The conditions in Eqn. (4), (5) en-  nomial time algorithm for near-optimal reinforcement learning.

sure thatlUy (mr), {Upn (7}, are accurately evaluated — Journal of Machine Learning Research

with high probability (by the Hoeffding inequality) and Demiris, J., & Hayes, G. (1994). A robot controller using learning

Eqn. (4) also ensures th@t/y, ., (rr)}; are accurate es- by imitation.

timates ofU,;(m) (by Theorem 9). Using the Simulation Durrett, R. (1995).Probability: Theory and ExamplesDuxbury

Lemma and the same reasoning as in the proof of Lemma 6 Press.

gives us that if the algorithm does not terminate in step 4 oKaelbling, L. P, Littman, M. L., & Moore, A. W. (1996). Rein-

the algorithm, then the policy(¥ must be visiting a state- ~ forcement learning: A surveylAIR

action pair(z, u) that satisfies Kakade, S., Kearns, M., & Langford, J. (2003). Exploration in
metric state space®roc. ICML

dvar(P("x;u)vp(i)("-ryu)) > m (24) Kakade, S., & Ng, A. Y. (2005). Online bounds for Bayesian

algorithms.NIPS 17

with probability at leastzzE—. If (z,u) satisfies  keams, M., & Koller, D. (1999). Efficient reinforcement learning

Eqgn. (24) then we must have (using Prop. 7) that in factored MDPsProc. IJCAL
2 (0) X0 N Kearns, M., & Singh, S. (2002). Near-optimal reinforcement
[(Ap(z) + Bu) — (A ¢(x) + B u)2 > T6H2 Ry oy - learning in polynomial timeMachine Learning journal

Kuniyoshi, Y., Inaba, M., & Inoue, H. (1994). Learning by watch-
ing: Extracting reusable task knowledge from visual observa-
3 tion of human performancd-RA 10, 799-822.
Ok v k1N (log ki1 N) poly (| Allp, || Bl . s, ma, Ng, A. Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B.,
log } H R l)) (25) Berger, E., & Liang, E. (2004). Inverted autonomous helicopter
o) T Tmax flight via reinforcement learningnternational Symposium on

. . . .  the algorith h her hand Experimental Robotics
.tlmes inN I.teratlons.o the algorithm. On the other hand, Pomerleau, D. (1989). Alvinn: An autonomous land vehicle in a
if the algorithm continues, we have from above that such o\ ral networkNIPS 1

an error must be encountered (with high probability) Sammut, C., Hurst, S., Kedzier, D., & Michie, D. (1992). Learn-
a ing to fly. Proc. ICML

HRpax N) (26) Schaal, S., & Atkeson, C. G. (1994). Robot learning by nonpara-
) metric regressionProc. IROS
times. Note that the lower bound on the number of state mart, W. D., & Kaelbling, L. P. (2000). Practical reinforcement

action pairs encountered with large error in Eqn. (26) grows |earning in continuous spaceBroc. ICML

faster inv th‘_”m the upper bound in Eqn. (21?).Once the Sutton, R. S., & Barto, A. G. (1998)Reinforcement learning
lower bound is larger than the upper bound we have a con- \mT press.

tradiction. Thus from Eqn. _(26) and _(25) We can ConCIUdeWiIIiams, D. (1991). Probability with Martingales Cambridge
that after a number of iterations as given by Eqgn. (3) the al- pathematical Textbooks.

gorithm must have terminated with high probability. Also,

since we chosg;, Ny such that{ Uy, (7 }; andUp, (r7)
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terminates. |

From Lemma 10 this can happen only

O

131n this proof sketch we ignore a dependencéobn N. See
the long version for a formal proof.



