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Abstract

The rapid paceof researchin the fields of ma-
chine learning and image comparisonhas pro-
ducedpowerful new techniquesin bothareas.At
the sametime, researchhasbeensparseon ap-
plying the bestideasfrom both fields to image
classificationandotherformsof patternrecogni-
tion. This papercombinesboostingwith state-
of-the-artmethodsin imagecomparisonto carry
out a comparativeevaluationof severaltop algo-
rithms.Theresultssuggestthatanew methodfor
applyingboostingmaybemosteffectiveon data
with many dimensions.Effectively marryingthe
bestideasfrom thetwo fieldstakeseffort, but the
techniquesandanalysesdevelopedhereinmake
thetaskstraightforward.

1. Introduction

Researchershavemadegratifyingprogressrecentlyin both
machinelearningand imagecomparison.Boosting(Fre-
und& Schapire,1996),supportvectormachines(Burges,
1998)andotherso-calledlarge-margin techniquesconsis-
tentlydemonstrateimprovedperformancewhenappliedon
top of older, moreestablishedmachinelearningmethods.
Simultaneously, researchersin the field of imageretrieval
havedevisednew representationsthatallow quickcompar-
isonsbetweenimagesbaseduponmultiplecues– colorand
texturedistributions,for example.Techniquessuchascolor
correlograms(Huanget al., 1997),redundantbanksof tex-
ture filters (De Bonet & Viola, 1997), andothers(Howe
& Huttenlocher, 2000) have shown measurableimprove-
mentsover earlier, moresimplistic methodssuchascolor
histograms(Swain & Ballard,1991). Thesetwo bodiesof
researchcombinedhave thepotentialto generatepowerful
patternrecognitionalgorithms,particularly in the areaof
imageclassification.Unfortunately, with a few exceptions,
very little currentresearchappealsto bothfieldsby incor-
poratingthebestelementsof each.Thecombinationof the
newer imageanalysistechniqueswith the concurrentad-
vancesin machinelearningturnsout to containsubtleyet

significantpotentialpitfalls thathave not beenadequately
addressedto date.

This paperinvestigatesthe bestway to combineboosting
with a rangeof promisingimagecomparisonmethods,af-
ter the exampleof Tieu andViola Tieu andViola (2000).
It examinesseveral candidateapproaches,since the best
way to incorporateboostingusingthesetechniqueshasnot
yet beenestablished.A summaryof the findingsappears
in Section3. In particular, a novel approachis developed
hereinusingconicdecisionboundariesthatallowsboosting
to becombinedwith any of the leadingimagerepresenta-
tions. Theexperimentalresultsshow this methodto work
betterwith thehigh-dimensionalimagerepresentationsthat
arebecomingmorecommontoday.

1.1. The Problem

Several characteristicsof image comparisontechniques
make the straightforwardapplicationof boostingdifficult.
Imagerepresentationstypically exhibit a high numberof
linearly nonseparabledimensions.This makesthe useof
machinelearningmainstayssuchasC4.5(Quinlan,1993)
bothslower andlesseffective thanthey arein the sortsof
problemstypically looked at by the learningcommunity.
Thecomparisonmetricsdevelopedfor imageretrieval, on
the other hand, also form an incompletefoundationfor
boosting. Orientedtowardsretrieval rather than classifi-
cation,they do not addresstheissueof establishinga clas-
sification threshold. More significantly, thesetechniques
aredesignedto measureimagesimilaritiesgiven a single
targetimage;they do not necessarilyhandlea setof target
images,possiblywith weightsindicatingtheir importance.
For boosting,incorporatingsucha weightedsetof targets
is essential.

Thenäıveapproachto expandingfrom asingle-targettech-
niqueto a multiple-targettechniquewould beto usesome
linear combinationof the representationsof the multiple
target, probablythe meanor the sum. Unfortunately, this
methoddoesnot work: typically the combinedrepresen-
tation is significantly worse at picking out membersof
the classthan many of the individual training examples



alone(Howe, 2001). This reflectsthe complexity of im-
age classes: they tend to be only diffusely clusteredin
any given image representation,interspersedwith non-
membersof theclass,andrife with outliers.

1.2. Boosting in Context

Boostingbeganasa techniquefor combiningdifferently-
trainedclassifierswith uniquesetsof strengthsandweak-
nesses.Properlydone,a weightedvoteof eachclassifiers’
predictionscanreinforcethe strengthsandcancelout the
weaknesses(Schapire,1990). Thusa classificationalgo-
rithm thatdisplaysmarginalsuccess(accuracy slightly bet-
ter thanchance)canbe “boosted” into an algorithmwith
much higher accuracy. AdaBoost (Freund& Schapire,
1996)first provideda widely known algorithmicapproach
to boosting.Sincethen,many variantshave appearedthat
seekto addresssomeof its shortcomings,suchasintoler-
anceto errorsin the training data(Friedmanet al., 1998),
but AdaBoostcontinuesto bewidely used.

AdaBoostandboostingalgorithmsin generalrequireabase
learning algorithm, often referredto as a weak learner,
that canclassifyany setof weightedinstanceswith better
than50% accuracy. With a two-classsystem,suchweak
learnersarenot hardto develop: nearlyany division of the
spaceof possibleinstanceswill do. Althoughthe theoret-
ical resultsplaceonly weakrequirementson the baseal-
gorithm,empiricalexperiencesuggeststhatmorepowerful
baseclassifierstendto work betterwhenboosted(Freund
& Schapire,1996).Thebaseclassifieris trainedin succes-
sive roundson differentsubsetsor weightingsof the ini-
tial trainingdata,producingtherequiredsetof differently-
trainedclassifiersthatcanbecombinedto producea final,
morereliableclassification.

Thesuccessof boostinghasbeenattributedto its ability to
increasethe separation(calledthe margin) betweenposi-
tive andnegative instancesof a classbetterthana single
classifieralone(Schapireet al., 1998). As suchit belongs
to thebroadcategoryof large-marginclassifiers,whichalso
includessupportvectormachines(Burges,1998). Practi-
calexperiencewith boostingsuggeststhatmany successive
roundsof boostingcangraduallyincreasethemargin with-
out overfitting thetrainingdata,evenafter theerroron the
trainingsethasbeenreducedto zero(Schapireetal.,1998).

In spiteof thesuccessof boostingin otherareas,little work
hasbeendoneto datein applyingit to images.TieuandVi-
olaTieuandViola (2000)usea feature-selectionalgorithm
equivalentto simpleboosting,but the focusof their work
is elsewhere.Perhapsonereasonthatsolittle attentionhas
beendevotedto the topic is that researchersworking with
imageshave focusedmainly on retrieval ratherthanclas-
sification. Only recentlyhave algorithmsdevelopedthat
offer reasonableclassificationperformanceon any but the

simplestof imagecategories.

1.3. Two Approaches

In orderto applyboostingto mostextant imagerepresen-
tationsdesignedfor retrieval, onemustfirst decidehow to
adapta representationdesignedfor pairwisedetermination
of similarity so as to producea classdecisionboundary.
In doingso,onemaydecideto adoptanapproachthathas
moreof theflavor foundin traditionalmachinelearning,or
onemayoptinsteadfor anapproachthatretainsmoreof the
flavor of theoriginal imageretrieval technique.This paper
looksatbothof thesepaths.Thefirst approachusessimple
single-dimensionthresholdeddecisionboundaries,which
maybeviewedasdecision-treestumps(decisiontreeswith
adepthof 1). Intuitively, it looksfor dimensions(a.k.a.fea-
tures) demonstratingexceptionalvaluesthat happento be
highly correlatedwith membershipin the class. The sec-
ond approachusesthe entirevectorfor comparison.This
is achievedusinga cosinemetric(measuringtheanglebe-
tweentwo normalizedvectors)andconicdecisionbound-
aries,for examplewith thevectorrepresentationof a target
imageattheaxisof thecone.Intuitively, it looksfor images
thataresimilarenoughto theexemplarimageaccordingto
thecosinemetric.Onemightexpecteitheror bothof these
approachesto work better, dependingupontheunderlying
imagerepresentationchosen.

Regardlessof the method,any simple classifierusedfor
boostingmustconformto a few simpleassumptions.As
input it receivestwo collectionsof vectors,

���
and

���
, con-

tainingrespectively therepresentationsof positiveandneg-
ative trainingexamplesof theclassto be learned.In addi-
tion it receivesacollectionof weightsonthesevectors,� �
and � � , indicatingtheimportanceplaceduponlearningto
classify the correspondingtraining example. From these
inputs, the classifiershouldgeneratea rule that classifies
any imagerepresentation� aseitheraclassmemberor not;
thismaybethoughtof asa functionfrom thespaceof pos-
sible representations� onto �
	���
�� . Section2.1 describes
severalcommonimagefeaturespaces� usedin thispaper.

Two featuresof most image representationsmake them
somewhat different from many of the typesof data typ-
ically usedwith boosting. They tend to be of very high
dimension,with someschemesusingtensof thousandsof
dimensions(Howe,2001;Tieu & Viola, 2000).Thecorre-
lationsbetweenindividualdimensionstendto beunknown
andpresumablyhighly complicated.Furthermore,any sin-
gle individualdimensiontypically haslow correlationwith
any interestingimageclass:therearefew “smokingguns”.
Theseconsiderationshave led to the developmentof the
two techniquesdescribedbelow, one which concentrates
on individual features,andonewhich looks at the vector
representationasa whole.



1.3.1. FEATURE-BASED BOOSTING

Thefirst method,denotedhereafterasfeature-basedboost-
ing, or FBoostfor brevity, createsasimpleclassifierasfol-
lows. For eachdimensionin � , it sortsthevaluesfoundin� �

and
� �

, removing duplicates,to determinea complete
setof candidatedecisionthresholds.It thenscoreseachof
thesedecisionthresholdsin termsof theweightederrorrate
it would generateif usedasa classifier. Thebestthreshold
is computedfor eachindividualdimension,andthebestof
thesebecomestheruleusedto classifyunknown instances.

Feature-basedboostingrepresentsa fairly traditionalway
to apply boosting. Tieu andViola Tieu andViola (2000)
adoptthisapproachin theirwork. Fromamachine-learning
viewpoint,FBoostis equivalentto usingdecisiontreeswith
a single branch(also called decisionstumps) as the base
classifier. Friedman,Hastie,& TibshiraniFriedmanet al.
(1998)presentevidencethat thesimplicity of thedecision
stumpsascomparedto full decisiontreesmaybecounter-
actedby asufficientnumberof boostingsteps.

Onemightexpectfeature-basedboostingto work bestwith
imagerepresentationsthatusethe ��� metric(alsoknownas
theManhattandistance),sinceboththefeature-basedclas-
sifier and the ��� metric rely on a separationin the indi-
vidual features(dimensions).Suchrepresentationsinclude
bothhistogramsandcorrelograms.

1.3.2. VECTOR-BASED BOOSTING

The secondmethod, denotedhereafteras vector-based
boosting, or VBoostfor brevity, representsanon-traditional
applicationof boostingconceptswith no closeanalogues
known to the author. Implementingit effectively turns
out to requiresomecreativity. If only the positive train-
ing instancesare usedas cone axes in creatingindivid-
ual classifiers,thentheresultingsetof decisionboundaries
lacksenoughvarietyfor effectiveboosting.(Thealgorithm
quickly reachesa point wherenoneof the availabledeci-
sion boundariesare of high quality.) On the other hand,
allowing any axis at all leavesan infinite numberof pos-
sibledecisionboundariesto check,with no guidetowards
finding the bestone. A compromiseheuristicis therefore
used,with reasonableresultsproducedin practice.Theal-
gorithmdescribedbelow consistentlygeneratesindividual
classifierswith greaterthan50%accuracy evenaftermany
successive roundsof boosting.

Let � � and � � be thesumof thevectorsin
� �

and
� �

re-
spectively, asweightedby theweightsin � � and � � . Con-
siderthehyperplanethatbisectstheanglebetween� � and
� � . Ourexperienceshowsthatthemajorityof theweightof
positiveexampleswill tendto lie on onesideof thehyper-
plane,while the majority of the weight of negative exam-
pleswill tendto lie on theotherside.(Usuallythepositive

������

���
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Figure1. Schematicillustrationof 8�9

examplesareclusteredon the � � side,but if this is not the
casethe algorithmsimply exchangesthe classificationla-
belsfor thatroundof boosting.)Thedotproductwith avec-
tor orthogonalto thebisectinghyperplanethereforeproves
usefulin discriminatingbetweenpositive andnegative ex-
amples.The heuristicalgorithmcalculatesthe orthogonal
vector ��: accordingto Equation1 andthencomputesits
dot productwith all thetrainingvectors.

� :<; � �>= � �@?BA � �DC � �FEG � � C � � G (1)

Figure1.3.2containsa schematicillustrationof the situa-
tion describedabove.

As wasthecasefor thepreviousclassifier, therangeof dot
productsbetween� : andthe elementsof the training set
offersa finite choiceof decisionthresholds.The bestcan
bechosensimplyby computingtheweightedtrainingerror
for eachpossibility.

2. Experimental procedure

Theexperimentalproceduredescribedbelow hasthreeaxes
of variation:theimagerepresentationused,thetypeof base
classfierusedfor boosting,andtheimagecategoryused.Of
these,thecomparisonsbetweenimagerepresentationsand
betweenbaseclassifiersaremost interesting. All experi-
mentsareperformedon the sameset,comprising20,100
imagesfrom the Corel photo library. Corel imageshave
beenusedin many workson imageretrieval, andmorede-
tails on this setof imagesareavailableelsewhere(Howe,
2001).

All experimentsuse HJILK -fold cross-validation. For each
of five replications,the imagesetis split in half, with half
of thepositive instancesin eachfold. Eachfold is usedto
train a classifier, and its performanceis testedon the op-
positefold. Comparingresultsacrossthefive replications



providesanestimateof thedeviation.

2.1. Image representation

Threeimagerepresentationscomefrom relatively recent
work on ways of describingimagesthat preserve multi-
ple primitive imagecues:color, texture, relative location,
etc.Correlograms(Huanget al., 1997)assemblestatistical
informationaboutcolor co-occurrenceson thepixel level.
Correlogramfeaturesareof the form “the probability that
a pixel B at distanceM from pixel A hasthesamecolor as
A.” Stairs(Howe & Huttenlocher, 2000)explicitly records
thepatchesof colorandtexturefoundin differentlocations
within the image. Thus eachfeaturein Stairsrepresents
thepresenceor absenceof a patchwith onediscretecom-
binationof color, texture,andlocation.An unnamedtech-
niqueintroducedby Tieu andViola (Tieu & Viola, 2000)
registersthe outputof banksof layeredcolor and texture
filters. A featurein this representationcorrespondsto the
outputof a setof threesuccessively appliedtexturefilters
summedover the entire image. Finally, color histograms
(Swain & Ballard, 1991)area well-establishedrepresen-
tation, includedhereasa control. Eachfeaturein a color
histogramrepresentsthepercentageof theimagethatis of
a particulardiscretecolor.

TheTieu-Viola representationis alteredsomewhatherein
orderto achieve a practicalalgorithm. Their original rep-
resentationstoresabout50,000numbersper image. With
a collectionof 20,100images,therefore,theentiredataset
occupiesroughly 8 Gb of memory. While this mayeasily
fit on a disk, it will not fit into memoryfor efficient pro-
cessing.An approximationyields the necessaryreduction
in requiredmemory:thevaluesarenormalizedby subtract-
ing themeanfor eachfeatureanddividing by thestandard
deviation, after which valuesdiffering from the meanby
fewer than2.5standarddeviationsaresetto zero.This al-
lows the datato be storedas a sparsematrix with about

5	ON elements.Tieu andViola hypothesizethat thesuccess
of their methodstemsfrom extremefeaturevaluesin the
rangeof 4 or morestandarddeviations,so thereis some
reasonto believe that this approximationwill not unduly
affectperformance.Ontheotherhand,it is problematicfor
the imagesthat show no featuresat all with valuesmore
thantwo standarddeviationsfrom the mean(roughly one
third of thetestcollection). Tieu andViola do not address
thememoryissuein their paper, which looksat only 3000
images.

2.2. Boosting Type

Strictly speaking,only oneboostingalgorithm,AdaBoost
(Freund& Schapire,1996), is used in all experiments.
Rather, thedifferencecomesfrom thebaseclassifierused,
as describedin the previous section. Although the base

classifierusedfor boostingmakesno differencein theory,
thecommonwisdomandexperienceholdsthatsomebases
make for better boostingthan others. Becausethe two
methodsusedherework quitedifferently, any disparityin
their performanceshouldbe instructive. As a control, the
experimentincludesa third, unboostedclassifier. In order
to giveamoremeaningfulcomparisonto theboostedalgo-
rithms, this is not simply a singleapplicationof the base
classifier(which doesquite poorly). Rather, the control
is a nearest-neighborclassifierusingthebestexemplarsof
theclassasselectedby a greedyadditiveapproach(Howe,
2001).

2.3. Image Category

Five chosencategoriesreflect a moderaterangeof diffi-
culty andsubjectcategory: Suns(226 imagesof sunrises
and sunsets),Wolves (110 imagesof wolves), Churches
(101 imagesof churches),Tigers (100 imagesof tigers),
andRaceCars (100 imagesof Formula1 racecars). Note
that thesechoicesincludeboth naturalandmanufactured
objects,full scenesandspecificentitieswithin scenes.

3. Results

Table 1 shows the meanareaunderan ROC curve com-
putedfor eachof the 60 (PQISRQISH ) experimentalcon-
ditions, as a percentof total possiblearea. The dataare
groupedby imagecategory, sincethemostinterestingvari-
ationsin performanceshow up whenthe category is held
constant.Thedeviationsaregenerallysmall: lessthan2.5
percentagepointsin all but threecases.

Theresultsdisplaysomeinterestingtrends.First of all, the
boostedmethodsgeneratehighernumbersthanthe corre-
spondingcontrol in all but two cases,andthedifferencein
eachof thelatter is not significant.This resultis not auto-
matic, sincethe control caseis not a simplistic singleap-
plicationof theboostedclassifier, but aneffective nearest-
neighborclassifierusingthebestexemplarsof theclass.

Although the unboostedbaseclassifierdoeslittle better
than chance,for completenessTable 2 gives the perfor-
manceof this option. Notethata completelyrandomclas-
sificationalgorithmshouldgenerateROCcurveswith areas
of 50%.1 A comparisonwith thenumbersin Table1 shows
theclearadvantageof boosting.

3.1. Comparing boosting types

Comparisonsbetweenthetwo typesof boostingrevealthat
different approacheswork bestwith different underlying

1The apparentworse-than-chanceperformanceof the Tieu-
Viola control in Table1 is interestingin this regard,but doesnot
affect theconclusionsof this paper.



Table1. Per cent areaunder the ROC curve for two boosting
methodsandanunboostedcontrol.Thebestmethodin eachgroup
of threeis underlined,andthebestmethodin eachclusterof 12 is
boldface.

Method Hist Corr Stairs T-V
Control 82.7 86.1 92.2 23.6

S
un

s

T
0.6

T
1.1

T
0.3

T
5.1

VBoost 93.5 98.1 93.2 77.5T
0.5

T
0.4

T
1.0

T
1.3

FBoost 96.1 96.2 93.8 75.6T
0.4

T
0.9

T
0.7

T
1.9

Control 71.6 70.3 75.3 51.1

C
hu

rc
h

T
1.9

T
1.2

T
1.9

T
0.6

VBoost 76.9 79.8 81.4 66.4T
2.2

T
1.7

T
1.6

T
2.2

FBoost 78.6 80.5 79.6 62.2T
1.2

T
1.6

T
1.1

T
4.0

Control 90.2 81.0 88.6 43.1

C
ar

T
1.3

T
0.9

T
0.3

T
1.6

VBoost 93.3 96.6 96.3 68.2T
0.7

T
0.6

T
1.2

T
1.1

FBoost 97.3 98.0 96.3 63.5T
0.6

T
0.5

T
0.6

T
1.9

Control 93.5 87.6 85.2 37.0

T
ig

er

T
0.7

T
0.3

T
1.1

T
0.7

VBoost 92.5 96.8 88.9 57.8T
1.0

T
0.5

T
0.8

T
1.6

FBoost 98.0 97.7 92.4 54.4T
0.7

T
0.4

T
0.6

T
3.3

Control 86.8 89.2 80.7 48.4

W
ol

f

T
1.5

T
1.0

T
0.4

T
0.6

VBoost 85.8 91.3 87.1 61.4T
2.1

T
1.8

T
0.9

T
2.5

FBoost 90.7 89.6 88.5 58.0T
2.2

T
2.0

T
1.3

T
1.3

Table2. PercentareaundertheROC curve for a singleiteration
of thebaseclassifier. Randomchancewill yield anexpectedscore
of 50%

Method Hist Corr Stairs T-V
VBoost 50.7 62.3 52.8 49.1

S
un

s

(base)
T

1.2
T

3.2
T

1.7
T

2.7
FBoost 49.6 54.1 52.9 55.2
(base)

T
1.6

T
3.0

T
2.1

T
1.3

VBoost 49.3 49.2 52.2 50.4

C
hu

rc
h

(base)
T

2.0
T

4.4
T

3.5
T

2.6
FBoost 50.3 51.0 50.0 51.7
(base)

T
1.4

T
4.0

T
2.6

T
4.7

VBoost 50.5 58.4 48.5 49.8

C
ar(base)

T
3.6

T
2.6

T
4.4

T
4.0

FBoost 47.7 52.0 50.1 49.9
(base)

T
2.3

T
4.6

T
2.5

T
2.3

VBoost 48.4 50.1 47.0 49.4

T
ig

er(base)
T

3.3
T

2.8
T

1.9
T

1.2
FBoost 49.2 50.4 50.4 51.0
(base)

T
3.5

T
2.0

T
2.3

T
3.0

VBoost 51.6 51.2 53.4 48.7

W
ol

f(base)
T

2.3
T

2.6
T

2.3
T

1.9
FBoost 51.6 49.9 51.8 49.1
(base)

T
2.4

T
2.5

T
3.3

T
2.4

imagerepresentations.For the histograms,feature-based
boostingconsistentlyperformsbetter, achieving significant
differenceson four of thefive imageclasses.(Underscores
indicatethe bestboostingmethodin eachcategory.) For
the Tieu-Viola method,in contrast,vector-basedboosting
consistentlyperformedbetter, althoughthedifferencewas
only statisticallysignificanton oneset(RaceCar). There-
mainingrepresentationsshow mixed results. For correlo-
grams,FBoostdoessignificantlybetteron two categories
andVBooston one. For Stairs,FBoostdoessignificantly
betteron only onecategory, with theremainingcategories
splitting theadvantageandshowing no statisticallysignifi-
cantresultseitherway.

Although the sparsityof statisticalsignificancein the re-
sults makes it difficult to be sure, it appearsthat vector
lengthmaybeanimportantfactorgoverningwhichmethod
works better. The representationsare listed in the table
from left to right in order of increasingvector length:
histograms(128 dimensions),correlograms(512), Stairs
(19,200)andTieu-Viola (46,875). The successof VBoost
appearsto increaseslightly with thenumberof dimensions,
doingworston thesmallestrepresentationandbeston the
largest. This is fortunate,sincechoosingthe bestfeature
onvectorswith many dimensionsis quitetime-consuming:
VBoostnot only worksbetterin thesecases;it runsfaster



aswell. If theadvantageof vector-basedboostingfor high-
dimensionalrepresentationsholds up, it may ultimately
provea fruitful approachin otherareasbesidesimageclas-
sification. On the other hand,further researchmay ulti-
matelyprovethattheapparenttrendstemsfrom idiosyncra-
ciesof the histogramandTieu-Viola representations.For
example,the individual dimensionsin Tieu-Viola may be
moreintercorrelatedthanin theotherrepresentations.

3.2. Comparing image representations

Several other trendsreveal themselves in Table 1. First,
althoughthe Tieu-Viola representationimprovesthe most
underboosting,theultimateperformanceusingit doesnot
matchthatof theotherthreerepresentations.This maybe
in partbecauseof therepresentationalrestrictionsimposed,
asdescribedin Section2.1. However, without somesuch
approximation,it is difficult to imaginehow to apply the
techniqueto largerdatasets.

Of theotherthreerepresentations,correlogramsdisplaythe
bestoverall score(indicatedin bold) for threeof the five
imagecategories,with histogramsandStairssharinghon-
ors on the remainingtwo. However, neitherof the latter
two scoresaresignificantlybetterstatisticallythanthecor-
respondingcorrelogramscore. Therefore,it appearsthat
correlogramsarethebestchoiceby a smallmargin, if one
cansomehow determinethebestform of boostingto usein
a givensituation.

4. Conclusion

Boostingimprovestheperformanceof imageclassification
virtually acrosstheboard.Two differentmethodsdescribed
herein for constructingboostableclassifiersfrom a base
imagerepresentationboth yield betterresultsthanan un-
boostedcontrol. Of these,the methodbasedupon indi-
vidual featuresworks betterwhen the numberof dimen-
sionsin theimagerepresentationis small,while themethod
baseduponthe entirevectorappearsto work betterwhen
the numberof dimensionsis large. The former represents
traditionalapplicationsof boosting,while the latterusesa
novel typeof decisionboundaryfor thebaseclassifier. Re-
gardless,this work shows thatsystematicapproachesexist
for combiningadvancedimagerepresentationswith boost-
ing, and that suchcombinationsgeneratesuperiorclassi-
fiers.
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