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Abstract

Fast and accurate analysis of signals in fluo-
rescence in-situ hybridization (FISH) images
is required for detecting genetic abnormali-
ties. The analysis depends upon a classifier
to discriminate between artifacts and valid
signals of several fluorophores (colours), and
well discriminating features to represent the
signals. We evaluate feature sets by illus-
trating the probability density functions and
scatter plots for the features, and using two
class separability criteria: a scatter criterion
and the classification accuracy. The same
classification accuracy is the ultimate crite-
rion in evaluating the classifier. Represented
by the recommended features, up to 90% of
valid signals and artifacts of two fluorophores
are correctly classified using a neural net-
work (NN) based hierarchical strategy. The
classifier accuracy is found to be comparable
with that of the support vector machine and
slightly inferior to that of the Bayesian NN.
Although applied to cytogenetics, the paper
presents a comprehensive, unifying method-
ology of qualitative and quantitative evalu-
ation of pattern feature representation that
may be applicable to other real-world pattern
recognition problems.

1. Introduction

In recent years, fluorescence in-situ hybridization
(FISH) has emerged as one of the most significant
new developments in the analysis of human chromo-
somes. FISH offers numerous advantages compared
with conventional cytogenetic techniques since it al-
lows numerical chromosome abnormalities to be de-
tected during normal cell interphase. One of the most
important applications of FISH is dot counting, i.e.,
the enumeration of signals (also called dots) within
the nuclei, as the dots in the image represent the in-
spected chromosomes. For an accurate estimation of
the distribution of the number of chromosomes over

cell population, especially in applications involving a
relatively low frequency of abnormal cells, large num-
bers of cells are needed to be examined. As visual
evaluation of large numbers of cells and enumeration
of hybridization signals is very tedious, laborious and
time-consuming, FISH analysis for dot counting can be
expedited by using an automatic procedure (Netten et
al., 1997).
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Figure 1. Two FISH images used in dot counting taken at
the same field-of-view but at different focal planes: (a)
in and (b) out-of-focus. In the original coloured image,
chromosomes 13 and 21 were indicated by green and red
signals, respectively, while the nuclei were coloured in blue.

To perform dot counting, an automatic system usu-
ally selects the ‘sharpest’ image along the Z-axis of
each field-of-view (FOV) using auto focusing mecha-
nism. Employing this mechanism, however, extends
the length of the analysis and is prone to errors (Net-
ten et al., 1997). We suggest to dispense with auto-
focusing mechanism and to base FISH dot counting
on a neural network (NN) classifier discriminating be-
tween in and out-of-focus images taken at different fo-
cal planes of the same FOV (Figure 1). Each image of
a FOV is analysed and each image signal is classified
by the NN as real (focused) signal or artifact, which
is the result of out-of-focusing. Following the discrim-
ination of valid signals and artifacts in each image,
the image that contains no artifacts is selected as the
in-focus image to represent the FOV. Proportion es-
timation of cells having different numbers of signals
can be then performed using in-focus images captured
from the sample. This estimation provides the cy-
togeneticist indication for deviation from normality,



e.g., excess or deficit of a chromosome. The suggested
method shortens the length of image acquisition, as
images are captured coarsely without the necessity to
find the exact location of the in focus image and since
selected image objects rather than the whole image
are analysed. Combining with multi-spectral analysis
(Section 2), the suggested methodology also shortens
the length of image analysis. However, as the system is
required to classify real signals and artifacts, its ability
to discriminate between focused and unfocused signals
should be more accurate than that of the discriminat-
ing element of a system employing an auto-focusing
mechanism, as the latter encounters only valid sig-
nals. Therefore, the proposed system depends upon
two interrelated components: a highly-accurate clas-
sifier to distinguish between valid and artifact signal
data, and well-discriminating multi-feature signal rep-
resentation. Accurate classification will be achieved
when both components are successful. Indeed, we
study here feature representation for FISH signals and
the use of a classifier to discriminate between focused
(real) signals and unfocused (artifact) signals. Differ-
ent classification strategies, some of them hierarchi-
cal, based on the two-layer perceptron neural network
(NN) are employed for the classification.

Section 2 of the paper describes FISH image analysis
and feature measurement, while Section 3 presents sig-
nal classification. The results of experiments to eval-
uate the features and different classification strategies
are given in Section 4, while Section 5 concludes the
paper with a discussion.

2. FISH image analysis

2.1. FISH multi-spectral image processing and
segmentation

The process of preparing, hybridizing and screening
FISH samples, as well as the procedure of capturing
FISH images are described in Lerner et al. (2001a). A
total of 400 images are collected from five slides and
stored in TIFF format.

Generally, special multi-stage (e.g., TopHat-based)
procedures that rely on heuristically-derived thresh-
olds and parameters are conventionally applied to the
intensity image in order to segment nuclei and signals
(Netten et al., 1997). Multi-spectral image processing
and segmentation, however, avoids the use of these
procedures. By analysing each of the three colour
channels — red, green and blue (RGB) of a FISH im-
age separately, processing and segmentation can be
facilitated. Nuclei are analysed using the blue chan-
nel, whereas red and green signals are analysed us-

ing the red and green channels, respectively. Finding
‘optimal’ global thresholds in the RGB image is al-
most trivial compared with thresholding an intensity
image since the channels contain no background and
only blue (red, green) objects are found in the blue
(red, green) channel. Also, for these reasons, moderate
changes in the threshold values barely affect the over-
all accuracy of image analysis. In this work, threshold
values of 0.5 and 0.8 of the maximum channel inten-
sity are found suitable for the segmentation of signals
and nuclei, respectively. Following thresholding, noise
reduction, boundary smoothing of the nuclei by mor-
phological operations and spatio-spectral correlation
between nuclei and signals are implemented to com-
plete the segmentation of the nuclei and signals.

Finally, multi-spectral image analysis also yields hue-
based features, which are found here efficient for FISH
signal representation and classification. Furthermore,
it allows the analysis of multiple fluorophores which is
not commonly possible.

2.2. Signal feature measurement and
evaluation

Following segmentation, sets of features are measured
to represent the signals. The features include area, ec-
centricity and a number of spectral features. We com-
pute, at the specific colour plane, three RGB intensity-
based measurements: the total and average channel in-
tensities and the channel intensity standard deviation.
Following the conversion of RGB to HSI (hue, satu-
ration, intensity) colour format, we can also compute
four HSI based measurements: maximum hue, average
hue, hue standard deviation, and delta hue, which are
more appropriate for signal discrimination than RGB-
based features. Delta hue is the difference between
the maximum and average hue normalized by the av-
erage hue. This feature takes up values near zero for
real signals and larger values for artifacts. Two addi-
tional features of the set are the two coordinates of the
eigenvector corresponding to the largest eigenvalue of
the red and green intensity components of the signal.
The last feature is the signal average grey intensity,
I = (R+ G + B)/3, where R, G and B are the inten-
sities in the red, green and blue channels, respectively.
Table 1 lists and numbers the twelve features to facil-
itate their identification in the rest of the paper.

Visual evaluation can provide preliminary insight into
the relative merit of the features to the classification
procedure, dependencies between the features and po-
tential causes of misclassification. Feature evaluation
using a class separability criterion can elaborate the vi-
sual analysis and quantify the importance of features



Table 1. The set of features studied in the work. Numbers
are used in the rest of the paper to identify the features.
Texture indicates standard deviation of intensity (5) or hue
(8). Eig. 1, 2 are abbreviations for the two coordinates of
the eigenvector corresponding to the largest eigenvalue of
the red and green intensity components of the signal.
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and sets of features. The criterion can also be applied
to feature selection, i.e., the selection of a (small) sub-
set, of the feature set yielding an accurate classification
in minimal computational cost. In practical problems
and for a not very large feature set, we can search
among all the possible feature sub-sets and evaluate
each one of them using the criterion. The sub-set that
achieves the highest value of the criterion is then se-
lected to represent the patterns to the classifier. For
moderate and large feature sets, optimal (e.g., branch
and bound algorithm) and sub-optimal (e.g., sequen-
tial forward selection algorithm) search methods, re-
spectively, are generally employed (Devijver & Kittler,
1982).

The criterion of separability that is considered here,
called J; (Fukunaga, 1990), is based on the within-
class scatter matrix, S, = Zle PE{(X - M;)(X —
M)T|w;} = Zle P;Y;, and the between-class scatter
matrix, S = 25:1 P;(M; — My)(M; — My)T, where
M, = E{X} = EiL:l P;M; is the mean pattern of the
mixture distribution. X|w; are patterns of class w;
(: = 1, L) with mean M;, covariance matrix ¥; and a
priori probability P;. The criterion J; = tr(S,1S) is
expected to be larger when the between-class scatter
matrix is larger and/or the within-class scatter matrix
is smaller.

Qualitative feature evaluation using conditional prob-
ability density functions and scatter plots, and quan-
titative feature evaluation using criterion J; and the
NN classification accuracy are presented in Section 4.

3. Signal discrimination

One of the main purposes of this work is to demon-
strate automatic signal discrimination in in and out-
of-focus FISH images. Although the application of the
research is to dot counting, we are not interested for
the moment in estimating the proportions of cells hav-
ing specific numbers of signals, but in the ability to
accurately distinguish between real signals and arti-
facts. This ability forms the basis of the proposed dot
counter.

The neural network (NN) classifier, which has been
considered here, predicts a posteriori probability of
class membership. We describe bellow a two-class NN
which is appropriate for two of the three classifiers
which have been used in this study. The third classi-
fier, a multi-class NN is described in Bishop (1995).

Consider a training dataset D which consists of IV data
points with binary class labels {¢; ...tx} and vectors
of inputs {x3...xx}. We assume that the data was
generated by some true underlying function y(x). Our
objective is to learn the parameters 8 of some approx-
imating function f(x,0) whose form is dependent on
our model choice, M, so that we may make ‘good pre-
dictions’ about our class labels.

We define a likelihood function as Bishop (1995)

N
p(DI) = [ £(xn,0)" [L - f(xn, "™ (1)

n=1

The approximating function, f, is represented by the
output of an NN with H hidden nodes in its single
hidden layer

H
f(xn,0) =0 (Z Uhg(urf{‘xn)> . (2)

h=1

The parameters § have been split into the input to hid-
den weights represented by H vectors uy, each vector
being the weights that ‘fan-in’ to hidden node h, and
v, the vector of the hidden to output weights, con-
sisting of H elements v,. We have omitted biases for
notational simplicity. We take the activation function
g to be a hyperbolic tangent, and o(-) is the logistic
sigmoid function

1

") = e

()
which constrains the output of the network to be be-
tween 0 and 1 allowing us to interpret f as the proba-

bility P(C}|x) that an input vector x belongs to class
Ch.



We may now define an ‘error function’ as the nega-
tive log likelihood leading to the cross entropy error
function

—Ilnp(D|6) = - Z{tn In(f(xn,0))

+ (1 —t,)In(1 f(xmo))}

(4)

This error function may be minimised by a gradient-
based optimisation method, e.g., the scaled conjugate
gradient algorithm as in our case.

In the suggested methodology, signals (representing
the red and green fluorophores) are classified into four
classes: ‘real red’, ‘artifact red’, ‘real green’ and ‘ar-
tifact green’. Within the ‘artifact’ classes we expect
to find unfocused and overlap signals. Labels for the
patterns, as belonging to one of the four classes, are
needed to train and evaluate the classifier, and they
are obtained by an expert cytogeneticist. Following
the normalisation of the features to zero mean and unit
variance, patterns of signals extracted from all the im-
ages are divided randomly into training and test sets
and classification into one of the four classes is imple-
mented using cross-validation. A validation set which
is drawn from the training set assures that the classifier
is not over-trained, and the ‘optimal’ configuration is
selected. This guarantees rapid training and improved
generalisation capability of the classifier.

Three NN-based classification strategies are examined
here. In the first, called the ‘monolithic strategy’, pat-
terns are classified into the four classes using a sin-
gle NN. The two other strategies are hierarchical and
based on the assumption that the classification prob-
lem can be considered as a two times two-class problem
rather than a four-class classification problem. In the
second strategy, termed the ‘independent’, patterns
are classified into ‘red’ and ‘green’ classes using the
‘colour network’ and independently by a second net-
work, the ‘real network’, into reals and artifacts. Clas-
sification of a pattern into the four classes is achieved
by a common decision of both networks. In the third
strategy, called ‘combined’, patterns are first classified
into ‘red’ and ‘green’ classes using the ‘colour network’
and then based on the results of this network they are
classified by two other networks, the ‘real-red network’
and the ‘real-green network’, into reals and artifacts of
the two colours.

4. Experiments and results

We established a database of 400 in and out-of-focus
FISH images, which were captured from five slides.
Following segmentation, 3,144 objects within the nu-
clei were identified as signals and features were mea-
sured for them. Based on labels provided by expert
inspection, 1,145 of the signals were considered as ‘re-
als’ (among them 551 were red) and 1,999 as ‘artifacts’
(among them 1,224 were red).

First, experiments to evaluate signal feature represen-
tations were held. Figure 2 demonstrates the appli-
cation of two methods of visual evaluation, one using
histogram estimates of conditional probability density
functions (pdfs) and the second using scatter plots,
to the features of Table 1. Figure 2a and Figure 2b
depict, respectively, the conditional pdf of the aver-
age grey intensity (I;) for red signals and a scatter
plot of the average grey intensity (I;) and the average
hue. Similar graphs have also been derived for other
combinations of classes and features. The large extent
of overlap between histogram estimations for different
classes demonstrates some of the expected difficulties
of the application domain.
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Figure 2. (a) A histogram estimate of the one-dimensional
conditional pdf of the average grey intensity (I1) for red
signals, and (b) a scatter plot of the average grey intensity
(I1) vs. average hue.



The complete visual analysis (Lerner et al., 2001b)
has showed that in order to achieve accurate signal
classification multi-feature representations are needed.
Therefore, we employed two class separability criteria,
scatter criterion J; and the probability of misclassifi-
cation of the NN, in evaluating such representations.
For the latter criterion we had to optimise the network
configuration and study the network learning curves.
Thus, experiments to find suitable configurations for
the NNs of each of the three strategies were performed.
Input and output dimensions of each of the NN-based
classification strategies were determined by the feature
space dimension and the number of classes, respec-
tively. The number of hidden units was determined
such that the network had the highest generalisation
capability measured on a validation set drawn from
the training set. Training of each of the networks, in
each of the experiments reported here, was continued
for 200 epochs and using three random network ini-
tialisations (a committee). The results were averaged
over these initialisations as part of a cross-validation
(CV-5) experiment. Each of the strategies, classifying
signals represented by different feature sub-sets, was
checked using its own optimal configuration. In addi-
tion, we examined the sensitivity of the classification
accuracy of each strategy against the sample size by
repeating the experiment for training sets of different
sizes. The size of the training set was increased from
10% to 90% of the data, where the same unseen 10%
of the data was used for the test. The results in Fig-
ure 3a demonstrate that the classification accuracy of
the ‘monolithic strategy’ on the test set follows, as ex-
pected, the increase of the training sample size until
its maximum level. However, the classification accu-
racy on the training set has a minimum. The expla-
nation is that for a very small sample size, training is
very simple and classification of a few training patterns
can be very accurate. It is, however, more difficult to
maintain this accuracy as the sample size increases and
more variants of the training patterns are added. The
classification accuracy, hence, decreases until it reaches
a minimum for a ‘critical mass’ of learned patterns.
After this point, as sample size continues to grow, the
additional patterns are not so different from those of
the ‘critical mass’. Thus, learning of the patterns of
the (extended) ‘critical mass’ is intensified, while at
the same time the fraction of misclassified patterns
becomes lower. The result of both trends is towards
the improvement of the classification accuracy on the
training set as is shown in Figure 3a.

Table 2 shows the results of feature evaluation using
the two class separability criteria, J; and the classi-
fication accuracy, for several manually-selected three

‘monolithic’
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classification accuracy (%)
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Figure 3. (a) Classification accuracy of the ‘monolithic’
strategy for increasing sample sizes. (b) Classification ac-
curacy (mean and standard deviation) of the NN-based
‘monolithic strategy’ for increasing sizes of feature sub-sets.
Each sub-set includes the ‘best’ (according to J1) features.
The largest sub-set includes the entire feature set.

feature sub-sets. These sub-sets are based on the most
discriminative single features found in previous exper-
iments. Unseen signals represented by different com-
binations of features are classified as reals or artifacts
of two colours with accuracies of up to 87.5% depend-
ing on the classification strategy. This accuracy in-
creases to 89.2% when four feature sub-sets are exam-
ined (Lerner et al., 2001b). The table also shows val-
ues of, and ranks according to, J; of the above feature
sub-sets. Feature sub-sets consisting of hue features
(maximum or average) and intensity features (average
channel intensity or average grey intensity) are found
to provide the best representations of the signals.

Table 2 demonstrates arbitrary selection of the size
of the feature sub-set (3). We extended this exam-
ination by optimising the size of the sub-set and its
content simultaneously. The ‘optimal’ size was de-
termined by the highest classification accuracy of the
‘monolithic strategy’ evaluated for networks of differ-
ent input sizes. The ‘optimal’ content for each sub-
set size was set by criterion J;. Figure 3b shows the



Table 2. The accuracy on the training (Tr.) and test (Tst.) sets of the three NN-based strategies classifying FISH signals
represented by different combinations of features (numbered according to Table 1). This accuracy is also employed as a
feature evaluation criterion compared with the rank a feature sub-set achieves (among 120 sub-sets) according to scatter

criterion Ji.

FEATURE ‘MONOLITHIC’ | ‘INDEPENDENT’ | ‘COMBINED’ J1 RANK
COMBINATION | TR. TsT. TR. TsT. TR. T'SsT.

4,7, 12 79.0 78.2 78.5 77.7 81.9 | 81.4 | 1.7543 1
4,5,6 79.0 77.3 79.1 77.3 82.4 | 81.3 | 1.6789 2
6,9, 12 80.4 79.3 79.9 79.0 83.8 | 83.4 | 1.2218 56
1,4,7 84.3 83.0 82.1 81.5 88.3 | 87.5 | 1.4958 14

classification accuracy obtained using the optimal fea-
tures for each size of sub-set, and the corresponding
NN configuration having the ‘optimal’ number of hid-
den units required to classify this sub-set, as deter-
mined on the validation set. For small sub-set sizes,
the classification accuracy increases almost linearly
with size. However, employing larger sub-sets only
improves the accuracy moderately until the ‘curse-of-
dimensionality’ deteriorates the results. The effect of
the curse-of-dimensionality is even more evident after
comparing the test highest accuracy (85.1%) achieved
by the ‘monolithic strategy’ on the entire set (Fig-
ure 3b) with accuracies (higher than 86%) obtained
using several manually-selected sub-sets of three and
more features (Table 2). The success of the latter sets
also hints to the inferiority of criterion J; compared
with the classification accuracy in selecting optimal
feature sub-sets for classification.

Finally, we compared the accuracy of the NN classifier
with those of three other state-of-the-art techniques:
Bayesian neural network (BNN), support vector ma-
chine (SVM) and naive Bayesian classifier (NBC), as
well as with that of a linear classifier. We divided
the classification task into two: classification of signals
into colour (red or green) and classification of signals
as ‘real’ or ‘artifact’. This simplification determined
indirectly the ‘independent strategy’ as the technique
of choice to represent the NN classifier in the compar-
ison. The configuration and parameters of each of the
classifiers were determined on a validation set using
a cross-validation experiment to enable peak perfor-
mance of each of the techniques (Lerner & Lawrence,
2001). The entire feature set was employed without
applying feature selection. The comparison shown in
Table 3 reveals that the BNN is the most accurate
(although not always significantly) classification tech-
nique for both tasks, and the NN and SVM are com-
parable and second best. The inferiority of the NBC
compared with the other techniques is attributed to
the relatively large amount of dependency among fea-
tures of the set. This dependency violates the inde-

pendence assumption of the NBC (John & Langley,
1995), and thereby decreases its accuracy. This result
emphasizes the vital role of preliminary feature selec-
tion (or feature extraction performed as part of the
classification process) in removing correlated features
in order to facilitate pattern classification especially
for the NBC.

5. Discussion

Auto-focusing is a long and critical step required for
dot counting in FISH image analysis that upon fail-
ure undermines the whole analysis and leads to unreli-
able results. The alternative methodology suggested
here, based on multi-spectral image analysis, well-
discriminative features and signal classification, is an
accurate and efficient screening mechanism for obtain-
ing in-focus images necessary for FISH dot counting
applied in the detection of genetic abnormalities.

Features have been evaluated by conditional pdfs and
scatter plots providing preliminary visual insight into
the classification procedure. Feature selection enabled
the choice of feature sub-sets, which maximised scat-
ter criterion J; measuring class separability. However,
the ultimate and most reliable criterion for evaluating
features for class separability in problems with non-
parametric class conditional pdfs is the probability of
misclassification. Mismatches in selecting optimal sub-
sets by the two criteria can be attributed to the infe-
riority of J; for class patterns that have not equal co-
variance matrices and to its sensitivity to the relative
locations of the classes in the feature space. In addi-
tion, the hidden layer of the NN classifier performs an
additional feature extraction stage, which expands the
classifier discrimination power beyond that of a scatter
criterion.

As part of the classification process, extensive fea-
ture evaluation has been performed. This evaluation
demonstrated the superiority of hue and intensity-
based features for FISH signal classification. When
features of the two families were combined together,



Table 3. Classification accuracies of five techniques measured on the FISH data discriminating real signals from artifacts

(Real/Artifact) and red from green signals (Colour).

model Real/Artifact (%) | Colour (%)
Neural Network (NN) 86.4 98.1
Bayesian Neural Network (BNN) 88.2 98.8
Support Vector Machine (SVM) 87.2 98.4
Naive Bayesian Classifier (NBC) 83.0 94.0
Linear Classifier 84.1 94.6

even a single hue feature could separate entirely signals
of two fluorophores, leaving the task of discriminating
real signals from artifacts to intensity features. Conse-
quently, feature sets consisting of features of both fam-
ilies enabled an NN-based hierarchical strategy to clas-
sify nearly 90% of FISH signals as reals or artifacts of
two fluorophores. The NN, accomplishing high classifi-
cation accuracy with low computational requirements,
provided performance comparable with those of other
state-of-the-art classification techniques. As almost
only the measured features are specific to this classi-
fication problem, the methodology presented here for
a complete qualitative and quantitative evaluation of
feature representations can also be applied to other
real-world pattern classification problems.
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