
Learning to Recognize Objects - Toward Automatic Calibration of Color Vision
for Sony Robots

Tatjana Zrimec TATJANA@CSE.UNSW.EDU.AU

Centre for Health Informatics & School of Computer Science and Engineering, University of New South Wales, Sydney
Australia

Andy Wyatt ANDYWYATT @OPTUSHOME.COM.AU

The University of Sydney, Sydney, Australia

Abstract

Color detection can be seriously affected by
lighting conditions and other variations in the
environment. The robot vision systems need to
be recalibrated as lighting conditions change,
otherwise they fail to recognize objects or
classify them incorrectly. This paper describes
experiments toward object recognition under
different lightning conditions. We propose to
train the vision system to recognize objects
under different lightning conditions using
machine learning. Learned knowledge is then
used for object recognition. Having attached
leaning module to the vision system facilitates
the object recognition and provides conditions
for automatic adaptation of the vision system to
new environment.

1. Introduction

Every year, since 1997, there is a RoboCup competition
where different robot leagues compete in soccer games.
The aim of the competition is not to create robots to play
soccer so much as to encourage research institutions such
as universities to do research in cooperation between
autonomous agents in dynamic multi agents environment.
Playing soccer requires concentrating on a small number
of well-defined problems, which results in developing
competitive innovations in the areas of computer vision,
locomotion, strategy and teamwork.

The work presented in this paper is about Sony legged
robot league. Each team consists of four quadruped
robots, similar to the entertainment robot AIBO ERS-210.
(see Figure 1a). The robots are equipped with different
sensors, among which is the on-board CCD camera. The
vision system is responsible for analyzing the scene
correctly and it is quite important in the success of one of
these robots in the competition. The robots use visual
information alone to determine information about the

surrounding robots, the ball as well as their own position
and direction.

The current systems in use have one major problem,
which this project attempts to address. The problem is that
the robot vision systems need to be recalibrated as
lighting conditions change, otherwise they fail to
recognize objects or classify them incorrectly. Changes of
the lighting conditions during the training period are
tolerable since there are no time constraints. The more
crucial are the changes of the lighting conditions during
the actual competition. Usually there are two play fields
and each has different lighting. The robot teams have to
be ready to play in a short period of time. So far, the
recalibration is performed manually prior the game or
even the previous day (evening). That is very risky since
the light can change between the period of calibration and
the actual game. The aim of this project is to develop an
automatic calibration procedure in order to increase the
robustness of the robot vision system.

The approach we propose here is to train the vision
system to recognize objects under different lightning
conditions using machine learning. Learned knowledge is
then incorporated in the vision system and is used for
object recognition. The learned classifier should be able
to recognize objects although their colors due to the
lightning condition have changed. In order to generate
such a classifier, we have to choose "good" vision
parameters (attributes) to describe the objects in the
scene.

2. Sony Robot Vision

The robot camera delivers color images with low image
resolution. Color images are usually represented in Red
Green Blue (RGB) color scheme. An alternative
representation is the YUV color scheme. In the Sony
Legged Robot vision the YUV color scheme is used as the
native image format. The U and V components represent
the c̀hromacity' of the pixel that relates to the actual
color. The Y component represents the `luminance' of the

pixel which describes how bright, or luminent the pixel is
(Hengst et al 2001). The YUV format can be easily
converted into RGB format by a matrix multiplication
(Hengst et al 2001, Chen et al, 2002).

To make the soccer play easier, the objects on the play
field are color coded. The objects of interest are the ball
which is orange, the goals that are blue and yellow and
the filed carpet which is light green. The filed is equipped
with six landmarks in a form of beacons with pink on
green, pink on blue and pink on yellow.

The task of the vision system is to enable the robot to find
the ball, to detect the beacons in order to localize itself, to
detect other robots and avoid the collision, or to find the
"correct" goal in order to score. Object recognition is
mainly based on finding regions of specific colors.
Consequently accurate color classification is critical
(Chen et al, 2002).

Color detection can be seriously affected by lighting
conditions and other variations in the environment. The
lights at the competition venue are usually very bright and
often have caused significant mis-classifications. There is
a need for a vision system that can be easily adapted to
new surroundings. Since colors may appear differently
under different lighting conditions, it is necessary to
perform some kind of training prior color classification.

The Sony legged robot has hardware on-board to perform
the color classification. It is capable of classifying 8
colors simultaneously (Hengst et al 2001). 256 levels of
luminance are divided into 32 equal size levels. At each
level, user has to provide rectangles coordinates for each
color s/he wants to classify. The rectangle that a pixel lies
in determines its color. After providing all the color
rectangles, upon receiving an image in YUV format, the
hardware returns an image in YUVC format where YUV
values are unchanged and C is the classified color of the
pixels. Because C value is stored in one byte and each bit
encodes one color, the system is capable of classifying
only 8 colors at a time. Most of the competing teams are
using Sony hardware to classify images. The variation is
how they determine the rectangles for colors in each of 32
levels (Hengst et al 2001, Sammon & O'Gorma, 2000).

In practice, the provided hardware was not very convent
for use and there were problems of ill-fitting rectangles
(Hengst et al 2001, Chen et al, 2002). Instead the UNSW
team has moved toward a software solution to the color
classification problem. They have used polygons instead
of color rectangles and each color classification was
described by a polygon in the UV plane. They perform
color calibration by collecting 25 snapshots of different
objects at different locations on the field. By using a
simple painting program, every pixel is manually
classified. All the pixels are used as training data for
learning. From the training data, for every color, one
polygon that best fits the training data of that color is
automatically generated. The color of an unknown pixel is
then determined by checking what polygons its UV values

lie in. The learnt polygons are encoded in such a way that
the on board classification can be done fast (Hengst et al
2001, Chen et al, 2002).

2.1 Object recognition - current and new system

Using the offline training module a look up color table is
generated. The on board software uses the color table to
classify each pixel in the input image. The object
recognition module is then used to identify the objects in
the image. The object recognition is based on the "Four-
connected color blobs" and the unique color of the object.
Bounding box around each color blob determines the size
of each blob found. The Bounding box is used in object
identification and in calculation of different parameters.
Figure 1a shows the image and 1b shows the identified
objects (from Chen et al, 2002).

Figure 1a: What the robot sees

Figure 1b: Identified objects within bounding boxes

We have taken different approach to object recognition.
We firstly identify the regions using an edge detection
algorithm, and then categorize the regions using a
decision tree process. The proposed approach should have
an advantage over the existing one, since the edge
detection is used to find the regions in the image, the
processing will be more robust than a process which
operates on a few pixels at a time. It also means that other
attributes specific to the region are available, such as
moment of inertia and wiggliness, which may help
identify an object.

The object detection process involves a few steps:
preprocessing, edged detection and region detection.

2.2 Preprocessing

Once the picture has been loaded or capture, some
preprocessing must occur on the image before its edges
can be detected. Image pre-processing by using a
bandpass filter is performed in order to reduce noise in the
image. The filtering process is performed by means of a
two dimensional convolution in the spatial domain
(Sammon & O'Gorma, 2000, Henrich, 1999).

2.3 Edge Detection

Edge detection was performed using the Sobel edge
detection method, which resulted in a measure of
"edginess" of each pixel in both horizontal and vertical
components. Once we have a map of the "edginess" of
each pixel, the next requirement is to determine which
pixels are actually part of a genuine edge. The next
function applied returns a binary "edge" image.
Unfortunately the resulting edges are quite thick, often
several pixels. This could be reduced by applying
thinning operations with edge linking, however this was
not attempted in the first place because the images were
relatively simple and the thickness of the edges was
deemed not to be a severe problem. However, if we deal
with more complex images and if the edges are so thick
the objects delimited by them can end up being quite
small, which makes identifying them more difficult.

2.4 Region Detection

Region detection is done by performing a “flood fill” of
the image for each region. The function starts at the top of
the edge map, and finds the first non-edge pixel. Then a
flood fill is performed, setting each pixel to an edge pixel
as it finds more adjacent non-edge pixels, and also writing
this pixel into another map (which will give the shape of
the region). As more pixels are discovered, a few of the
region characteristics are updated. These include the area,
bounding rectangle, average red, green and blue values
and average x and y co-ordinates (that is, position of the
centroid, sometimes called first moment, or first moment
of area). Once the fill has finished, other attributes of the
region are calculated: such as moment of inertia (also

called second moment of area), perimeter (measured by
counting the number of pixels on the edge) and derived
attributes, such as average hue, saturation and value,
wiggliness (square of perimeter divided by area) and
scaled moment of inertia (moment of inertia divided by
square of area).

The next step after generating edge map is learning to
recognize objects.

3. Machine learning experiments

The aim of the project is to train the vision system to
recognize objects under different lightning conditions.
The ideas is to describe each segmented object with a set
of attributes that are calculated from the image and then to
apply machine learning to build a classifier that can
recognize objects in the image. In order to develop such a
classifier, we have to choose good vision parameters -
attributes to describe the objects

3.1 Region characterization

Each region in the edge map was described by a set of the
following attributes: the area, bounding rectangle, average
red, average green and average blue values and average X
and Y co-ordinates (that is, position of the centroid,
sometimes called first moment, or first moment of area),
moment of inertia (also called second moment of area),
perimeter (measured by counting the number of pixels on
the edge), and derived attributes, such as: average hue,
saturation and value, wiggliness (square of perimeter
divided by area) and scaled moment of inertia (moment of
inertia divided by square of area) (Mojsilovic et al 1991).

3.2 Problems with the parameters

Note that area, perimeter and moment of inertia are all
dimensional properties. We can't use dimensional
quantities to help recognize a region in this case. In this
domain, the camera may be positioned anywhere in the
arena, and perspective projection will ensure that objects
further away will appear smaller in our image. As a result,
we can't say for example that a particular region is a goal
because it appears to have the right sort of area, since the
area will change by orders of magnitude with camera
position. As a result, we need to find some dimensionless
quantities.

We have used two such quantities. The first is
"wiggliness", defined by the square of the perimeter
divided by its area. Note that ((L) ^ 2) / (L^2) = 1,
showing that this quantity is indeed dimensionless. If you
make the region twice as "big", it will have double the
perimeter and quadruple the area, and as a result will have
the same wiggliness.

The second is scaled moment of inertia, which we call
SMOI. This is defined as moment of inertia divided by
the square of the area. Note that MOI has dimensions

ML^2. We will assume that each pixel represents a fixed
mass, or conversely that the object has uniform area
density. We can then define MOI as being the area
density times the area (to get mass) times the square of
the RMS distance from the centroid. If we ignore the area
density, since we will not be measuring this or changing
it, we see that MOI has the dimensions L^4. Hence SMOI
has dimensions (L^4) / (L^2)^2 = 1.

Other attributes are calculated as well, such as the average
value, which is the average of the average red, green and
blue components, the average saturation, which is 1.0 -
the minimum of the average red, green and blue
components divided by the average value and the hue,
which is the angle on the color wheel, where red is 0,
green is 120 and blue is 240, and is calculated using
inverse tangents.

Specially developed program for classification enables the
user to classify each area and to automatically generate a
training data file with the attributes of each region along
with its classification. The file with the training data and
the file with the specifications of the attribute and classes
were fed into See5 (C4.5 machine learning program)
(Quinlan, 1993).

The program for classification has an auto-classify
function, where the region is classified according to a
decision tree. This allows the user to see how the program
has identified each region, and also aids in further
classification since most of the classification can be
performed automatically and anomalies can be corrected,
rather than having to classify each region separately.

By analyzing the results from the first series of
experiments we have found out that a few of the region
attributes were deemed to be suitable for region
recognition. These were the average red, green and blue
components, the SMOI, the wiggliness and the average
hue, saturation and value components. This choice of
attributes ensures that the ML algorithm does not draw
conclusions based on unrelated information, such as
position of centroid or the area of the region. The above
mentioned attributes were used in the following
experiments.

4. Experiments and results

The resolution of the images used in our experiments was
160 by 120 pixels and the information in each pixel was
24 bits per pixel in YUV format. The images were
collected and saved in PPM binary format as images 320
by 240 pixels. We have written a program that converts
those images into lower resolution for faster processing.
The PPM images were subsampled by averaging every
four pixel region into a single color, and written as a
binary file (160 by 120 by 4 bytes long).

We have collected a large number of images under
varying lighting conditions and of different scenery. We

were quite methodical in the pictures we took in an effort
to include all the important objects at various distances,
and also changing lighting conditions.

Once we had classified 22 of the images, we fed the
results of this classification through C4.5, a machine
learning program, which produces pruned decision trees
based on the input data. We then incorporate this decision
tree into the automatic classification code in the program,
so that it could automatically classify more accurately.

We classified additional 12 images, bringing the total to
34 images, and repeated the learning process. Figure 2
shows original image (2a), edge map image (2b) and
classified image using learned classifier (2c).

We repeated the classification/learning steps by
increasing the number of the training examples. Fig 3
shows the results from the learning with 117 images.

The total number of images collected was 3000, and the
ones chosen for classification were a broad range, rather
than all from the same set of lighting conditions. Figure 4
shows more complicated image with the average colors
(4c) and true colors (4d).

5. Discussion

Color detection can be seriously affected by lighting
conditions and other variations in the environment. One
important problem for the Sony robots is that the robot
vision system need to be recalibrated as lighting
conditions change, otherwise they fail to recognize
objects or classify them incorrectly. Manual calibration as
is used so far is very time consuming and is limited.

The approach we are taking toward solving this problem
is to use learning to train the vision system to
automatically classify objects in the scene. The training is
performed by using supervised machine learning.

A few image-processing steps were applied to the images
in order to prepare them in a suitable form to be used for
learning. The bandpass filter was chosen because it can
remove specular highlights as well as reducing noise
while maintaining edges. In addition, the Sobel filter was
chosen based on its computational simplicity and its
apparent effectiveness.

The set of fourteen image attributes was originally
calculated and used for area (object) characterization. A
sub set of eight image attributes was experimentally
determined and used in the further experiments.

The experiments were performed in such a way that the
learned knowledge was used to help the classification and
only misclassified areas were classified manually. With
each iteration the learned knowledge was augmented and
a fewer mistakes were detected. By attaching a leaning
module to the vision system we provide condition that can
enable automatic adaptation of the vision system to new
environment conditions.

Next, we plan to test the results and to evaluate our
method on real Sony robots. We also plan to investigate
other methods for automatic color and object
classification.

Figure 2a:An image from the robot camera

Figure 2b: The edge map derived from the image

Figure 2c: The composite image showing the identified regions
and their average colors.

C4.5 [release 8] decision tree generator
Fri Oct 19 12:56:50 2001
--
 Options:File stem <bigset>

Read 631 cases (8 attributes) from bigset.data

Simplified Decision Tree:

green <= 210 :
| saturation > 29 : goal2 (38.0/2.6)
| saturation <= 29 :
| | saturation <= 10 :
| | | blue <= 181 : dk (121.0/1.4)
| | | blue > 181 :
| | | | wiggliness > 18 : dk (17.0/1.3)
| | | | wiggliness <= 18 :
| | | | | scaledMOI <= 77 : dk (7.0/1.3)
| | | | | scaledMOI > 77 : wall (8.0/1.3)
| | saturation > 10 :
| | | blue <= 131 :
| | | | wiggliness <= 5 : dk (8.0/1.3)
| | | | wiggliness > 5 :
| | | | | scaledMOI <= 160 : ground (121.0/5.0)
| | | | | scaledMOI > 160 :
| | | | | | green <= 135 : dk (9.0/1.3)
| | | | | | green > 135 : ground (6.0/2.3)
| | | blue > 131 :
| | | | value <= 173 : dk (47.0/2.6)
| | | | value > 173 : wall (3.0/1.1)
green > 210 :
| saturation <= 10 :
| | red <= 217 : dk (3.0/2.1)
| | red > 217 :
| | | value <= 254 : wall (212.0/5.0)
| | | value > 254 :
| | | | wiggliness <= 12 : dk (4.0/1.2)
| | | | wiggliness > 12 : wall (14.0/1.3)
| saturation > 10 :
| | blue <= 251 : wall (2.0/1.0)
| | blue > 251 : dk (11.0/1.3)

Tree saved

Evaluation on training data (631 items):

 Before Pruning After Pruning
---------------- ---------------------------
Size Errors Size Errors Estimate
39 8(1.3%) 33 10(1.6%) (5.3%)

Figure 3: Induced decision tree derived from the 117 images.
Only the pruned tree is shown.

Figure 4a: More complex image

Figure 4b:The edge map

Figure 4c: The composite image showing regions map and the
average color of each region

Figure 4c: The composite image showing regions map and the
average color of each region

Acknowledgements

We would like to thank Phil Preston for his help during
image collection and Claude Sammut for giving us access
to the robotics laboratory.

References

Hengst, B., Ibbotson, D., Pham, S. B., Dalgliesh, J.,
Lawther, M., Preston, P., Sammut, C. (2001) The
UNSW RoboCup 2000 Sonny Legged League Team,
RoboCup 2000: Robot Soccer World Cup IV, Springer

Chen, S,. Siu M., Vogelgesang, T., Yik, T.F., Bernhard
Hengst, B., Pham, S.B., Sammut, C.(2002) The UNSW
RoboCup 2001 Sony Legged League Team, RoboCup
2001: Robot Socer World Cup IV, Springer,

Sammon, M.J., O’Gorman, L. (2000) Practical
Algorithms for Image Analysis, Cambridge University
Press

Henrich, D., (1999) Space-efficient Region Filling in
Raster Graphics, The Visual Computer: An
International Journal of Computer Graphics, 10(4),
pp205-215

Mojsilovic, A., Kovacevic, J., Hu, J., Safranek, R.,
Ganapathy, S.K. (1991) Matching and Retrieval Based
on the Vocabulary and Grammar of Color Patterns,
International Journal of Computer Vision, 7(1):11-32,
1991

Quinlan, J.R (1993) C4.5: Programs for Machine
Learning, San Mateo, CA: Morgan Kaufmann.

