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Abstract

Many vision systems use skin detection as
a principal component. Skin detection algo-
rithms, normally evaluate a single and thus
limited color model, such as HSV, Y C,.Cj,
YUV, RGB, normalized RGB, etc. Their
limited performance, however, suggests that
they are looking at the incorrect color mod-
els. This paper describes a new constructive
induction algorithm that creates adequate at-
tributes for skin detection. The algorithm
starts with normalized RGB and is able to
produce a single rule with a small number
of easy to evaluate terms with superior per-
formance than existing methods. The con-
structive induction algorithm uses a new re-
stricted covering algorithm, called RCA, as
its learning component, which produces a sin-
gle rule with competitive results when com-
pared against C4.5.

1. Introduction

Skin color detection is an important step in many vi-
sion systems, like gesture recognition, hand tracking,
video indexing, face detection, etc. (e.g., (Brand et al.,
2001; Fleck et al., 1996; Hjelmas & Low, 2001; Ku-
mar & Poggio, 2000; Spors & Rabenstein, 2001; Saber
& Telkap, 1998; Sigal et al., 2000; Sobottka & Pitas,
1996; Soriano et al., 2000) to cite just a few). Pixel
based skin detection can narrow the search space prior
to high-level layers, however this is not an easy task.
Skin pixels can vary with ambient light, such as color
lamps acting as filters, brightness and specularities,
shadows, daylight, etc. Moreover, different cameras
return different values for the same scene, hence, skin
detection can become a cumbersome task.

There has been a growing interest in using probabilis-
tic methods for pixel based skin detection. One widely-
used choice is the Skin Probability Map, or SPM for

short (Brand & Mason, 2000; Brand et al., 2001; Jones
& Regh, 1999; Zarit et al., 1999), which has been as-
sessed (Brand & Mason, 2000) as the best one in terms
of accuracy and running time.

Despite of the long history of skin detection, there are
very few works (Brand & Mason, 2000; Zarit et al.,
1999; Terrillon et al., 2000) surveying which color mod-
els are more reliable for skin detection. Thus, most
vision systems just work on HSV, RGB, or normalized
RGB, which yields poor results. In this paper, a ma-
chine learning approach is used to construct a simple
to evaluate skin model with better performance than
existing methods.

Conventional inductive learning systems induce mod-
els from a fixed set of attributes. For a concept to
be learnable, its examples must populate one or more
regions of the hypothesis space expressible in the de-
scription language. If the original representation pro-
duces poor learning results, an alternative approach
is to perform automatic transformations of the rep-
resentation space until a suitable set of attributes is
found for the learning task. In this paper we applied
a constructive induction approach to find a set of new
attributes suitable for skin detection.

Most constructive induction systems use boolean com-
binations of existing attributes to create new at-
tributes. Their constructive operators can form con-
junctions and/or disjunctions of attributes (e.g., (Pa-
gallo, 1990; Ragavan & Rendell, 1993)) or even use
more sophisticated operators such as M-of-N (Mur-
phy & Pazzani, 1991) and X-of-N' (Zheng, 1995). Al-
though a large number of studies have been devoted
to boolean combinations of attributes (e.g., (Zheng,
1998)), there are very few systems that use arithmetic
combinations of real-value attributes, which normally
occur in vision. Most notably is the Bacon system

IM-0of-N answers whether at least M of the conditions
in the set are true. X-of-N answers how many conditions
in this set are true.



(Langley et al., 1983) which searches for empirical laws
relating dependent and independent variables. Ba-
con finds increasing and decreasing monotonic rela-
tions between pairs of variables that take on numeric
values and calculates the slop relating both terms to
create a new attribute. Once a functional relation be-
tween variables is found, it is taken as a new dependent
variable. This process continues until a complex com-
bination is found relating all the primitive attributes.

In this paper we start with the three basic color com-
ponents RGB in a normalized form and a simple set
of arithmetic operators to produce a suitable model
for skin detection. Once a new set of attributes is
produced, a new restricted covering algorithm, called
RCA, is used to construct a single rule of no more than
a small number of easy to evaluate terms with a min-
imum accuracy. We are interested in inducing simple
models as they are relevant to applications which re-
quire fast response times, such as, gesture recognition,
face and human tracking, etc.

RCA searches for candidate rules in parallel consider-
ing two intermixed criteria for selecting new terms, and
is shown to produce more understandable and easy to
evaluate models, with similar performance, when com-
pared against C4.5.

Section 2 introduces the constructive induction ap-
proach followed in this paper. The characteristics of
the data used in the test are given in section 3. Sec-
tion 4 describes the Skin Probability Map (SPM), the
current best model for skin detection used in computer
vision. The main results of the proposed algorithm are
presented in section 5. Finally, section 6 gives conclu-
sions and discusses future research directions.

2. Constructive Induction

The general approach followed in this paper for con-
structive induction is, as in many other systems, shown
in Table 1. The idea, is to start with some primitive
attributes and a set of constructive operators, create
a new representation space, run an inductive learning
algorithm, and select the best attributes of this new
space. This process continues until a predefined stop-
ping criterion.

This general approach is composed, as most construc-
tive induction systems, of three basic components
working together: (i) the machine learning algorithm,
(i) the constructive induction module, and (iii) an
evaluation component.

Our main goal is to induce a single rule with a small
number of relatively simple terms, which can be eas-

Table 1. General constructive induction algorithm.
CurrentAttrib = original attributes
Operators = set of constructive operators
UNTIL termination criterion
e NewAttrib = CurrentAttrib U new attributes
constructed with Operators on CurrentAttrib
e Run a machine learning algorithm on NewAttrib
e CurrentAttrib = Select the best attributes
from NewAttrib

ily evaluated and effectively used for human tracking.
We want it also to be competitive with existing skin
recognition methods.

Our learning algorithm, called RCA (Restricted Cov-
ering Algorithm) follows closely a general covering al-
gorithm, with some restrictions. Rather than trying to
build a set of rules, RCA tries to build a single rule for
each class with no more than a predetermined number
of terms. In our case, we are interested in learning just
one rule for skin detection.

The general strategy of RCA is to favor attributes
which cover a large number of true positives and at-
tributes with small number of false positives. Since we
are interested in a single rule we will talk about the
total number of true positives (T'T'P) which will be
used to increase the measure of recall? and the total
number of false positives (T'F'P) which will be used to

increase precision®.

Since we are dealing with real-value attributes, RCA
creates binary splits using an information gain heuris-
tic (the same used by C4.5 (Quinlan, 1993)). RCA
considers two possible attributes in parallel when con-
structing rules. On its first cycle, RCA constructs two
rules which have as LHS the attribute with larger TT P
in one rule and the attribute with larger TT P —T F P2
in the other rule. The following cycle produces two
rules out of each original rule (4 in total) following
the same criterion, again adding to the LHS of each
rule one attribute with large coverage and one which is
heavily penalized by the number of misclassifications.
This process continues until the rules produced have
a certain number of predetermined terms. The total
number of alternative rules produced is 2", where n
is the number of terms on each rule. RCA builds 2"
rules in parallel aiming for a large coverage with small
errors on the same example set. After the termination

*Recall = TP,I:'{»% x 100%, where TP = true positives
and FN = false negatives.
*Precision = 7755 x 100%, where FP = false posi-

tives.



Table 2. Overall description of RCA
For each class C
Let E = training examples
Let N = maximum number of terms per rule
Create a rule R(0) with empty LHS and class C
Let depth D =1
Until D = N do
For each attribute A create a split (Spa)
with greater information gain
For each existing rule R(D — 1)
create two new rules (R;(D) and Ry (D)) by
adding to its LHS, a Sp; with larger TT P

(R1(D)) and a Sp; with larger TTP — TFP?

(R2)
Let D+ D +1
For each R;(D) continue with its own
covered examples from E
Output all R;(D)

criterion all the alternative rules are displayed along
with measures of recall, precision, and success rate.
An overall description of RCA is given in table 2. The
idea behind constructing rules with two intermixed cri-
teria is to induce rules with complementary attributes.
We asses this strategy in section 5 when we compared
the performance of RCA with C4.5.

For instance, if RCA is restricted to create rules of
three terms, this produces 8 rules in parallel with at
most 14 attributes (if there are no duplicates). Fig-
ure 1 shows the different rules constructed with three
terms. Each path, from the root to a leaf, represents
one possible rule defined as the conjuction of the three
attributes along the path.

The constructive induction algorithm started its rep-
resentation space with the three basic color features:
RGB in a normalized form (i.e., ﬁ, ﬁ, and
ﬁ) and the constant 1/3 which we thought to be
useful since we are using three normalized attributes.
All of them were used to create new attributes by
seven constructive operators: A+ B,AxB,A— B, B —
A,A/B,B/A, and A2, where A and B can be any pair
of distinct attributes or 1/3 (except for A% where 1/3
is not considered).

3. Datasets

We explored the performance of our constructive in-
duction algorithm and its learning component, RCA,
in two types of images: (i) skin/non-skin indoor and
(ii) skin/non-skin outdoor. We used several daylight
and illumination conditions, as well as a number of in-
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Figure 1. Rules created by RCA. Each branch adds an at-
tribute using either criterion. Each path, from the root to
a leaf, represents a rule.

put sources. These image sets cover more than 2,000
people from different races and ages, and cover a wide
range of illumination conditions, from Tungsten lamps
(~3200K) to daylight (Dgs or 5000K-5500K). We ex-
pected a shift to yellow in indoor scenes (Tungsten),
and a little to blue in outdoor conditions (sun-shine).
In the case of outdoor scenes, we use both direct sun-
shines and shadows. The complete dataset has more
than 32 million pixels carefully labeled, and it is pub-
licly available by contacting the first author.

SPM was trained on two thirds of the 32 million pix-
els and tested on one third of them following the rec-
ommendations given in (Brand & Mason, 2000). On
the other hand, RCA and C4.5 were both trained on
150,000 randomly selected points, and tested on the
same subset of 22 million pixels. This subset has a bal-
anced number (11 million) of skin and non skin points.

4. Skin Probability Maps

There has been a growing interest in using proba-
bilistic methods for pixel based skin detection. One
widely-used choice is the Skin Probability Map, or
SPM for short (Brand & Mason, 2000; Brand et al.,
2001; Jones & Regh, 1999; Zarit et al., 1999), which
has been assessed (Brand & Mason, 2000) as the best
one in terms of recall and precision. A popular ver-
sion of SPM (Brand & Mason, 2000; Brand et al.,
2001; Jones & Regh, 1999; Zarit et al., 1999) is a
lookup table where RGB values directly address a
voting slot. Two 3D histograms are computed, one
for skin and one for non-skin. After dividing every
slot by the total count of elements, we get an as-
sociated probability on a [R,G,B] index. Statistics
are derived from these histograms. Then, the con-
ditional probability of a pixel with RGB values to

. . . . Histsgin b
be skin or non-skin is: P(rgb|skin) = %E:’g’];



and P(rgb|~skin) = %W A new unseen
pixel is labeled as skin if it satisfies a given threshold,

% > 0, where 8 is obtained empirically.

The idea behind SPMs seems reasonable given a large
amount of training data. Nevertheless, due to the
sparse distribution of skin points in RGB space (and
memory requirements), one usually reduces the cube’s
size. This step also helps to “generalize” and compact
the histogram. Such generalization in the histogram
model is guided by the number of bins. Thus, a SPM
also introduces another parameter to fit, i.e., the size
and number of bins to consider.

SPM was trained with two-thirds from our dataset and
tested on the remaining points. After following the
recommendations given in (Brand & Mason, 2000) we
got 95.8% for recall, 77.25% for precision, and 91% for
success rate*. These results are also shown in Table 3
for comparison against RCA.

5. Experimental Results

With the three initial attributes (normalized RGB)
and the constant 1/3 we generate, on the first cycle,
39 new attributes with our constructive operators.

Our stopping criterion was set to find a single rule (one
path in figure 1) of no more than three simple terms
with better success rate than SPM. We restricted the
length of the rule to three terms, as we were interested
in finding a simple and easy to evaluate rule. This
also restricts the number of possible new attributes
for the next cycle. If the best found rule is not com-
petitive with SPM the algorithm proceeds to another
cycle with the attributes used in the construction of
the rules.

The rules were also restricted to cover at least 100
instances from the training set.

The alternative representation spaces produced by
RCA are shown in table 3 along with recall, precision,
and success rate.

To our surprise, on the first cycle the first represen-
tation space of Table 3 had already better precision
performance than SPM, is not too far in terms of re-
call, and has better success rate, even with a much
smaller training set. Also, the performance measures
of the fifth representation space, shown in table 3, are
very similar to SPM. The rule for the first color model
is:

T e TP+TN
Success rate = TP-i-FP-:-_W’

atives.

where FN = false neg-
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Figure 2. Performance of the first rule with several images.

If z > 1.185 and
Giatyz > 0.107 and
s > 0112

Then Class = skin

The attributes used by this rule are easy to understand
and to evaluate. From experiments (Derrington et al.,
1984; Cole et al., 1993) we know that our visual system
decomposes colors in three visual pathways (1) lumi-
nance, which can be seen as normalizing on (r+g+b)?2,
(2) a red-green channel, which is present in the first
and third attributes, and (3) a blue-yellow, which is
not present in our findings. Thus, this color space
is suitable for color consistency checking or machine-
oriented, rather than human-like. Moreover, the ra-
tio g has been widely recognized as an interesting at-
tribute for skin classification (Brand & Mason, 2000;
Okada et al., 1989), although it introduces many false
positives. Figure 2 shows the performance on this rule
on several images.

We then decided to compare our results against C4.5
(Quinlan, 1993) as our decision learner to empirically
evaluate the performance of RCA. C4.5 was used to
produce rules, instead of RCA in the overall algorithm.
We used all the default parameter values for C4.5, ex-
cept that the rules were forced to cover at least 100
instances of the training set (as in RCA).

C4.5 with the same attributes (39) produced two rules
for skin, one with six terms and another one with five
terms. This is, in effect, an 11 attributes rule which

has just a slightly better performance values than our
single rule produced by RCA (93.1% of recall, 94.2%



Table 3. Results of the first level of combinations. These eight models have nine different components, which were selected
from a pool of 39. Results from SPM are also shown for comparison.

color model (three components) | recall precision success rate
(%) (%) (%)
b
- (T+;7+b)2 ﬁ 93.7 91.7 92.6
b
5 Trero? g 94.2 88.6 91
b
: g TTo02 94.3 88.5 91
b b
. : TTo0® 95.1 87.5 91
—2r4g+4b
z g 3 (Tigﬂb) 95.1 86 90
b +9+b -
. T rigib 96 85 89.2
b r —2r4g+b
7 7 3(T+g€i-b) 96 84.3 89.1
b r+g+b r+9—2b
v 3(Hg_g+b) 97.5 67.1 75
SPM on raw RGB 95.8 77.3 91

of precision and 93.7% of success rate).

Table 4. Response times (in seconds) for 22 million pixels
using the models produced by RCA, C4.5, and SPM

If g < 0.839 and
—b
Tig+b < 0.054 and
b
(7‘+§7+b)2 > 0.067 and
b
: < 1.048 and
Then Class = Skin
+
If r-Ti‘-g—gi-b > 0.685 and
Ti;_’;b < —0.049 and
b
(T‘{Zi-‘rb)Z > 0067 and
g < 1.249 and
# <0.324

Then Class = skin

It is interested to point out that the attributes selected
by C4.5 and RCA are disjoint. Also the attributes of
C4.5 are less intuitive. For instance, £ has been shown
to be a bad classifier for pixel based skin detection, as
Brand et al. have noticed (Brand & Mason, 2000).

The response time of the models produced by RCA

Response
Time (secs.)
SPM 4.6
RCA 8.1
C45 121

and C4.5 were also evaluated (see Table 4). As can be
seen, RCA is on average 50% times faster than C4.5.
Reasonably accurate and fast models, as those pro-
duced by RCA, are important for any tracking sys-
tems, which our main motivation for this research.

In order to increase the performance values of RCA,
we allowed it to grow an additional term, producing 16
rules in total. Our best model has the following per-
formance results: 94.1% of recall, 92.7% of precision,
and 93.4% of success rate.

If g < 1.249 and

s > 0.696 and

% - ﬁ > 0.014 and
m < 0.108

Then Class = skin



Although it is still slightly worst than C4.5, it is much
easier to evaluate. Allowing RCA to grow a rule with
five terms, increases the performance to 94% of recall,
93.6% of precision, and 93.8% of success rate, which is
slightly better than C4.5. With six terms, RCA pro-
duces several rules of equivalence performance to C4.5
(e.g., one rule has 92.4% of recall, 94.9% of precision,
and 93.7% of success rate).

We then decided to run our algorithm for another cycle
in search for better rules. We took all the attributes
used in the rules of three terms, without repetitions (9
in total) and feed them to our constructive operators.
This produced 234 new attributes. The 243 attributes
(234+9) were given to RCA which produced the fol-
lowing three terms rule with 93% of recall, 93.5% of
precision, and 93.3% for success rate. These results are
slightly better than those produced on the first cycle
by RCA.

2

If (Tjgigb)s > 0.1276 and
T 4 s <0.9498 and
bt < 27775
Then  Class = skin

C4.5 was also run on these 243 attributes, producing
three rules (12 terms in total) with 93.5% for recall,
92% for precision, and 92.7% for success rate, which
are slightly worst than RCA on the second cycle and
than C4.5 on the first cycle. A summary of all these
results is given in table 5. It should be noted that RCA
has all the best performance measures when compared
against C4.5.

If -3 < —0.1367 and
+g9+b *b
TR s > 0.583 and
r+g+b r—
321“ + 7‘+gib S 0.9498
Then Class = skin
It i-1 < —0.0905 and
+9+b
sbeth) > 34857 and
3
(ot by < 7.397 and
r+g+b 1
2 > —0.0976
Then Class = skin
If rg®—2b > 0.014 and

3r(r+g9+b)

br27rgb

rFFh)® > 0.0075 and
dhrtets) > 3.4857 and
rioth 1 > —0.0976 and

P < -1.1022

Then Class = skin

Table 5. Summary of results for SPM, RCA, and C4.5.

Algorithm Recall Precision Success
(%) (%) Rate (%)

SPM 95.8 77.3 91

RCA: 3 terms 93.7 91.7 92.6

1st. cycle

RCA: 4 terms 94.1 92.7 93.4

1st. cycle

RCA: 5 terms 94 93.6 93.8

1st. cycle

RCA: 6 terms 92.4 94.9 93.7

1st. cycle

RCA: 3 terms 93 93.5 93.3

2nd. cycle

C4.5 11 terms  93.1 94.2 93.7

1st. cycle

C4.5 12 terms  93.5 92 92.7

2nd. cycle

On this second cycle, both RCA and C4.5 produced
rules with less intuitive terms and C4.5 decreased its
performance. Adding new attributes does not neces-
sarily mean that a learning algorithm will improve its
performance. New attributes can bias the learner, at
early stages in the construction of rules, towards par-
ticular attributes, eliminating better rules in the long
run that could have been constructed if such addi-
tional attributes were not included. Perhaps better
attributes (and bias) could be obtained with a differ-
ent set of constructive operators. RCA, on the other
hand, appears to be less susceptible to the shift of bias
that can occur with the addition of new attributes as it
searches for rules in parallel. This, however, deserves
further tests and is left for future work.

By increasing the number of terms considered on each
rule, RCA is able to produce, at least on this do-
main, much simpler rules with equivalent performance
to C4.5. It is clear than further analysis is required in
other domains.

Our results for skin detection, either with RCA or
C4.5, are to our knowledge, very competitive to any
other existing algorithm reported in the literature.
Furthermore, the results from RCA are explicit and
are simpler to implement than SPM (or C4.5).



6. Conclusions and Future Work

In this paper, we have shown a constructive induction
algorithm that uses simple arithmetic operations to
change its representation space. The algorithm uses
RCA, a restricted covering algorithm, as its selective
learner. RCA searches for single rules in parallel, with
a predetermined length and using two intermixed crite-
ria for selecting attributes. The constructive induction
algorithm obtained better performance results in pre-
cision and success rate than SPM, considered as the
best skin selection method, and comparable to C4.5,
but with considerably simpler models. Fast and accu-
rate models for skin detection are important for human
tracking applications.

There are several future research directions that are
worth exploring. In particular, the effect of construct-
ing rules with more than one selection criterion needs
further analysis. We are assessing the performance
on RCA, on several databases, with a single criterion,
thus constructing a single rule, and with N (possibly
different) criteria, thus constructing N* rules in par-
allel (where L is the number of terms in the LHS of
the rules). A combined strategy, could be part as well
of a general covering algorithm, aiming at producing
simple rules. We are also doing a more in-depth anal-
ysis of the models found with our strategy from the
computer vision point of view.
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