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Abstract

To efficiently identify properties from its en-
vironment is an essential ability of a mobile
robot who needs to interact with humans.
Successful approaches to provide robots with
such ability are based on ad-hoc perceptual
representation provided by AI designers. In-
stead, our goal is to endow autonomous mo-
bile robots (in our experiments a PIONEER
2DX) with a perceptual system that can ef-
ficiently adapt itself to the context so as to
enable the learning task required to anchor
symbols. Our approach is in the line of meta-
learning algorithms that iteratively change
representations so as to discover one that is
well fitted for the task. The architecture we
propose may be seen as a combination of
the two widely used approach in feature se-
lection: the Wrapper-model and the Filter-
model. Experiments using the PLIC sys-
tem to identify the presence of Humans and
Fire Extinguishers show the interest of such
an approach, which dynamically abstracts a
well fitted image description depending on
the concept to learn.

1. Introduction: Anchoring symbols,
detecting and identifying objects

Recent works in both Robotics and Artificial Intelli-
gence have shown a growing interest in providing mo-
bile robots with the ability to interact and commu-
nicate with humans. One of the main challenges in

designing such robots is to give them the ability to
perceive the world in a way that is useful or under-
standable to us. One approach is to give the robot the
ability to identify physical entities and relate them to
perceptual symbols that are used by humans (to refer
to these same physical entities). To perform this task,
the robot has to ground these symbols to its percepts
(i-e., its sensor data). Recently, the term of Anchoring
(Coradeschi & Saffiotti, July 2000) has emerged to de-
scribe the building and maintenance of the connection
between sensor data and the symbols used by a robot
for abstract cognition. As a matter of fact, anchoring
is an important issue for any situated robot performing
abstract reasoning based on physically grounded sym-
bols. Amongst others, anchoring plays an important
role to communicate or relate to either other robots
(Steels, 1999) or humans (Thrun et al., 1999).

There are tasks, such as object manipulation or func-
tional imitation, where anchoring requires explicitly
recognizing objects and localizing them in the three-
dimensional space. Fortunately, such an object recog-
nition task is not necessarily required to achieve an-
choring. In applications such as human/object track-
ing, face and object identification, or grounded robot-
human communication, object identification is enough.
Informally, to recognize an object often requires from
the robot both identifying from its percepts what an
object is, and using a model of the object to local-
ize it. This task has been studied for a few decades
now and is known to be difficult in unknown environ-
ments (Stone, 1993). On the contrary, identifying the
sole presence of an object is simpler. Moreover, there
exist many easy to use and reliable descriptions for



characterizing the presence of an object. To identify
the presence of a fire in a room, one does not have
necessarily to recognize it. Smelling smoke, hearing
cracks, feeling heat, seeing dancing shapes on a wall
are different ways of identifying the presence of a fire.
For an autonomous robot, the ability to identify ob-
jects is a first step towards more complex tasks. Object
detection (detecting a fire) may be built by regularly
checking whether the object is identified. Identifying
objects is therefore a simple form of anchoring symbols
(such as fire) to its percepts.

In this paper, we are concerned with a practical task,
where a PIONEER 2DX mobile robot has to rely
on its limited vision sensors to anchor symbols such
as human being, mobile robot or fire extinguisher
that it encounters while navigating in our laboratory.
Anchoring is then used to support human/robot or
robot /robot communication. For instance, an interac-
tion may be engaged if a human being is identified, or a
rescue operation may be initialized if a non-responding
P1oNEER 2DX is identified. Identifying a fire extin-
guisher may allow the robot to respond to a query for-
mulated by a human. To design an autonomous robot,
living in a changing environment such as our labo-
ratory, with the identification ability described above
is a difficult task to program. As such it is a good
candidate for a Machine Learning approach, which
may be easily recasted as a classical concept learning
task. To teach the robot to anchor symbols using Ma-
chine Learning has proven successful (Klingspor et al.,
1996). To use machine learning techniques, the de-
signer has to both define learning examples and a rep-
resentation language based on the robot percepts to
describe them.

It is clear that a great part of the success of the learn-
ing task per se depends on the representation chosen
(Saitta & Zucker, 2001a). Having an AI designer pro-
viding the robots with an adequate representation has
a major drawback: it is a fixed, ad-hoc representa-
tion. Any change of setting (a museum instead of an
AT lab) may require a new perceptual description. In
order to overcome this drawback, our main objective
is to endow an autonomous robot with the ability to
dynamically abstract from its percepts different repre-
sentations, well suited to learn different concepts. The
intuitive idea is to have the robot explore the space
of possible examples descriptions (with various colors,
resolution, representation formalisms, etc.) so as to
discover for each concept a well-fitted representation.
The underlying intuition being that for anchoring the
symbol human being a robot does not need the same
visual resolution that might be necessary to identify a
power-plug on a wall.

Section 2 presents a concrete setting in which this
problem occurs and pinpoints why adapting ones rep-
resentation may be useful to increase learning accu-
racy. In Section 3, related works about vision and an-
choring in several research fields are quickly reviewed.
Then, Section 4 explains our approach based on ab-
straction operators applied to visual information pro-
vided by the robot. Finally, a set of real world exper-
iments describes the interest of such an approach and
outlines the difference between two representations,
each one fitted to a different concept (the presence
of a human and the presence of a fire extinguisher).

2. Problem settings

The practical task we are concerned with is part of
a wider project called Microbes (Picault & Drogoul,
2000), whose goal is to have a colony of eight robots
co-habit with AI researchers. We aim at providing
each PIONEER 2DX autonomous mobile robot with
the ability to identify -but not recognize- objects or
living beings encountered in its environment. Each
robot navigates during the day and when resource are
available it takes snapshots of its field of vision with
its video camera. The snapshots are taken either ran-
domly from time to time, or upon a specific human re-
quest 1. At the end of each day, the robot may report
to a supervisor and ”ask” her /him what objects (whose
symbols may or may not belong to a pre-defined lexi-
con) are to be identified on a subset of taken pictures?.
It then performs a learning task in order to create
or update the connection between sensory data and
symbols which is referred to as the anchoring process.
Figure 1 describes this process. The learning task as-
sociated to the anchoring is therefore characterized by
a set of image descriptions and attached labels. It cor-
responds to a multi-class concept learning task.

A key aspect of the problem lies in the definition of
the learning examples (the images) used by the robot
during the anchoring process. In effect, a first step in
any anchoring process is to identify (relevant) infor-
mation out of raw sensory data in order to reduce the
complexity of the learning task.

The PIONEER2DX mobile robot provides images
thanks to its LCD video camera while navigating in
the corridors. The images are 160 x 120 wide, with a
24 bits color information per pixel. Humans, robots,

!Thanks to active learning techniques, the robot may
also take snapshots of scenes that appear to be interesting
w.r.t. enhancing the detection accuracy of a known object
(e.g. ambiguous images).

2Again active learning techniques may be used by the
robot to select the most informative images.
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Figure 1. The four steps toward lexicon anchoring. As a
first step, the robot takes a snapshot of its environment,
and a supervisor labels it with the interesting content. The
robot tries to associate the provided label(s) with its per-
cept, and, after a number of such steps take place, it shall
be able to autonomously label a new environment.

Figure 2. Two snapshots taken by the robot. Left: image
labeled with ”fire extinguisher” and ”door”. Right: image
labeled with "human” and ”door”.

doors, extinguishers, ashtrays and other possible tar-
gets can be seen among the images as shown in Figure
2. All these possible targets, as they appear in the im-
ages, are of different shape, size, orientation and some-
times they are partially occluded. Finally, each image
is labeled with the names of the occurring targets.

3. Changing the Representation of
Images

3.1. Initial Perceptual Representation

We define the role of the robot’s perceptual system as
to extract abstract percepts out of low-level percepts,
such as a set of pixels, from the video camera or sonar
values. These abstract percepts provide a representa-
tion of the perceived world on which further compu-
tation will be based. They can be anything from sets
of clustered colored regions to a matrix resulting from
a Hough transform. The choice of a representation is
motivated by finding a good trade-off that reduces the
size of the search space and the expressiveness of the
abstract percepts.

As mentioned in the previous section, the problem we
consider is that of automatically finding a representa-
tion of a set of labeled images that is well adapted to
the learning of concepts. Let us underline that our goal

Concept number of | number of | Size of
to learn positive negative file
extinguisher! examples | examples
\ Fire 175 175 20,1 Mb
ﬂ‘_ m extinguisher
Human 60 60 9,7 Mb
being

Table 1. The two learning sets of images associated to the
concept "human” and ”fire extinguisher”

is not to achieve the best performance on the partic-
ular learning task mentioned in the previous section.
To obtain the best performance would require that ex-
perts in the field build an ad-hoc representation for
each concept to learn. On the contrary, we are inter-
ested in having a robot find by itself the good represen-
tation, so that, if the context changes or the concept
to learn is different, it has the ability to discover by
himself the good level of representation. We therefore
consider the representation provided by the sensors as
an initial representation.

From the robot’s point of view, each pixel from the
camera is converted into a low-level percept. In the
initial image representation, where each pixel is de-
scribed by its position (x,y), its hue (the tint of a color
as measured by the wavelength of light), its saturation
(term used to characterize color purity or brilliance)
and its value (the relative lightness and darkness of a
color, which is also refereed to as ”tone”). The ini-
tial description of an image is therefore a set of 19200
(160 x120 pixels) 5-uple (x,y,h,s,v). Each image is la-
beled by symbols following the process described in
Section 2. The positive examples of a given concept
(e.g., "presence of a fire extinguisher”) to learn corre-
spond to all images labeled positively for this concept.
The negative examples are the images were the target
concept does not appear. The number of examples for
two of the concepts we considered are given on Table
1.

The initial representation of images, consisting of hun-
dreds of thousands of pixels, is clearly a too low-level
representation to be used by Machine Learning algo-
rithms.

We have chosen the multiple-instance representation
to represent information from the images. Within the
multiple instance setting, objects are represented by
bags of feature vectors. Feature vectors are also called
instances and as in the traditional setting features
may be numeric as well as symbolic. The size of a
bag b is noted o(b) and may change from one object



to another. Its instances are noted b1 ...b,(). The
multiple-instance representation is an in-between rep-
resentation, more expressive than feature-vector but
for which efficient algorithms do exist, compared to
algorithms used with a relational description.

3.2. Dimensions of abstraction

In the perspective of automatically exploring the set
of possible representations of an image, we propose to
identify particular operators and to experiment with
them. There are countless operators that could be
applied to an image hoping for more accurate learning.
Operators changing the contrast, the resolution, the
definition 2 are all possible candidates.

To improve the learning of concepts, we are interested
in transformation that are abstractions in the sense
that they decrease the quantity of information con-
tained in the image(Saitta & Zucker, 2001b). The two
main dimensions for abstraction that we shall study
are:

e the resolution of the image, i.e., its granularity.

e The structure of the image, i.e., the smallest in-
dividually accessible portion of the image to con-
sider, be it a pixel or a complex region.

For each of these dimensions, we have defined an ab-
straction operator: respectively, associate and aggre-
gate. The associate operator consists in replacing a
set of pixels with a unique (mega)pixel that has for
its (h,s,v) values the average of the pixels that were
associated. This operator is a built-in operator for the
robot as it corresponds to a particular sub-sampling.
The aggregate operator consists in grouping a set of
pixels to form a region or a pattern. This operation
is also referred to as ”term construction” in the liter-
ature(Giordana & Saitta, 1990). The region does not
replace the pixels it is composed of, and therefore the
resolution or granularity of the image is not changed.
What changes is the structure of the image. The ag-
gregate operator may be either data-driven (this is the
case for region growing algorithms) or model based.

3The contrast measures the rate of change of brightness
in an image; high contrast suggests content consisting of
dark blacks and bright whites; medium contrast implies a
good spread from black to white; and low contrast implies a
small spread of values from black to white. The resolution
is a measure of the proportion of the smallest individually
accessible portion of a video image to the overall size of the
image. The higher the resolution, the finer the detail that
can be discerned. The definition corresponds to the clarity
of detail in an image and is dependent upon resolution and
contrast (Drury, 1990)
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Figure 3. The space of image representation obtained by
applying the associate operator (changing the resolu-
tion) and the aggregate operator (changing the structure).
Three examples of representations obtained after having
applied the aggregate operators and the associate opera-
tor.

For already mentioned reasons of efficiency required
by the use of a robot we have considered an aggregate
operator that is applied to contiguous pixels forming
a particular shape. Figure 3 depicts the space of rep-
resentation changes associated to these two operators.

We shall refer to the initial concept as low-level per-
cepts*. The ones obtained after applying the abstract
operators will be referred to as abstract percepts, since
they will be used as percepts for further processing.
For clarity, abstract percepts obtained by applying the
aggregate operator will be referred to as s-percepts and
ones obtained by applying the associate operator will
be referred to as r-percepts® .

4. Automatically changing the
representation for learning

In the previous section two abstraction operators to
change the representation of images were presented.
The parameter of the associate operators we have con-
sidered is the number of pixels that are associated to
form a (mega)pixel. The parameter of the aggregate
operator is the pattern or region structure.

With respect to the learning task described in Section
2, a key issue is to analyze the impact of representa-

4We will depart from the traditional use of the term
"ground” for the initial representation(Sacerdoti, 1974) as
for a robot the notion of ”grounding” corresponds to an-
other notion

Ss-percept, as in structural percept and r-percepts as in
resolution percept



tion changes on learning. The main question is related
to the choice of one operator and its parameters. In
Machine Learning, the abundant literature on feature
selection shows that approaches fall in two broad cat-
egories: the wrapper and the filter approach. Intu-
itively, the wrapper approach uses the performance of
the learning algorithm as a heuristic to guide the ab-
straction. The filter approach uses a a priori knowl-
edge to select appropriate abstractions. In Machine
Learning the combination of this two approaches has
not yet been explored. In the following, we present
how these two approaches can be combined. As it is
an approach that attempt to learn from the learning
process itself it is also refered to as a meta-learning
approach.

Since resolution changes the information contained in
an image, we have used an information-based filter ap-
proach to choose an a-priori good resolution to start
with for learning. The filter approach is therefore used
to explore the horizontal dimension of the space of Fig-
ure 3. To explore different possible patterns to apply
with the aggregate operator, we have used a wrapper
approach. The PLIC system is the result of the combi-
nation of these two approaches.

4.1. A Filter-Based exploration of the abstract
spaces

Let us suppose that a snapshot with N pixel is taken,
and that we are looking for the localization of an ob-
ject with r pixels. Let us suppose, for now, that each
pixel is either activated (has an intensity value 1) or
not activated (has an intensity value 0). The level with
N pixels is the more detailed one, whereas the max-
imum confusion is reached when the activity value is
averaged over all the N pixel, obtaining thus a sin-
gle, large percept. Let 7 be the homogeneous value of
this largest percept. Let, moreover, o be the standard
deviation of the intensities over the N pixels.

If groups of k pixels are associated into a single per-
cept, its average intensity will be computed from the
intensities of the component pixels, and the object we
are looking for will appear more or less blurred, de-
pending on how many activated pixels are included in
the k£ ones. Let us assume that the object can still
be discovered if its average intensity is greater than
a X T, where « is a number greater than one, which
depends on the sensor sensibility. For instance, if we
can distinguish objects whose average intensity differs
by the global average 7 by p standard deviations, we
will have: a =1+ (po /7).

Let us now consider a generic percept containing an
association of k pixels. Depending on the position of

this percept w.r.t. the object, its average intensity
will change. Among all the positions, there will be
at least one that reaches a maximum of intensity, and
will allow the object to be optimally individuated. If
kjr, the optimal new percept is included in the object
picture, and its average intensity will be 1. If k& > r,
the optimal percept will include r pixels with intensity
1 and (k r) pixels whose average intensity can be set
equal to 7. Then, the percept average intensity will
be:

I(k) = [r + (kr)7]/E (1)
In order to locate the object, it must be: I(k) > ar

From the above condition we obtain a maximum num-
ber of pixels for the new percept:

k<r(l—m))/(r(a-1)) (2)

It is clear the intensity of the new percept tends to 7
when k tends to V.

The above reasoning can be extended to values asso-
ciated to the pixels different from a binary intensity.
For example, in the application considered in this pa-
per, one of the averaged value can be the color hue. In
this case, we notice that the red color of the fire estin-
guisher, for instance, can be detected by the system at
a resolution (8 x 6), which does not allow the color to
be detected by the human eye.

4.2. A Wrapper-based exploration of the
abstract spaces

Once a resolution has been selected by the filter-based
approach described in the previous sub-section, the
wrapper-based component of the PLIC system explores
different image structure iteratively. PLIC is a refor-
mulation tool that acts as a wrapper according to given
rules in order to find the best granularity and struc-
ture for describing the images. In these experiments,
PLIC acts as follow : an initial structure is chosen, and
the image is reformulated in a multiple-instance repre-
sentation using this structure; then, the concepts are
learnt using this representation. Based on the results
on cross-validation ¢ of the learning algorithm, a new
structure is devised by PLIC. As for now, the search for
a good structure is done in an exhaustive manner from
the simplest one (i.e., one pixel at the chosen resolu-
tion) and exploring all the connected shapes of k pixels
before increasing k. The following figure is a synthesis
of this wrapper approach. The multiple instances rule
learner RIPPERMI1(Chevaleyre & Zucker, ECML2001)

52 widely used data-oriented evaluation of the learning
generalization error that consists in dividing the learning
set into a learning set and a training set
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Figure 4. The PLIC system Wrapper component.

was used on the descriptions obtained from these im-
ages with a ten-fold cross validation. Moreover, each
experiment is repeated 10 times in order to get a good
approximation of the results. RIPPERMI returns a set
of rules that covers the positive examples. PLIC inter-
acts with RIPPERMI in order to evaluate and create
descriptions.

5. Experiments
5.1. Experimental Setup

To evaluate the interest of abstracting visual percepts
from a Machine Learning point of view, a number of
different experiments have been carried out. The ex-
periments presented are based on the images acquired
by a PIONEER2DX mobile robot. The attributes used
for image description are : hue, saturation, value for
each pixel, and hue, saturation, value and correspond-
ing standard deviations for each r-percept. The targets
(be it a human or a fire extinguisher) as they appear in
the images are different in shape, size, orientation and
are sometimes partially occluded. Labeling with the
names of the occurring targets was done by a supervi-
sor (as explained in Section 2), and a noisy set of labels
was produced as well (wrong labels were given on pur-
pose). Two sets of experiments are presented, the first
one illustrates the impact of the operator aggregate
used by the wrapper-based component of PLIC and
the second the impact of the associate operator used
by its filter-based component. For each of these exper-
iments the results for the concept "human” and ”fire
extinguisher” are given.

5.2. Evaluating automatic changes of
granularity

The results obtained by the system PLIC are pre-
sented in Tables 3 and 2 below. Figures 6 and 5
respectively plot the evolution of the learning accu-

Resolution | Accuracy in % | std.dev | time (s)
<17 64,02 1,29 0,03
4x3 59,11 1,09 0,13
8x6 62,47 127 0,79

16x12 67,54 1,23 103
32x24 66,45 1,45 19,12
64x48 65,48 128 | 87,33

Table 2. PLIC results on learning the ”human” concept
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Figure 5. Experiments with the ”human” concept

racy depending on the resolution chosen for the extin-
guisher class and the human class. These experiments
on granularity illustrates the impact of changing the
resolution but do not use the filter-based exploration
described in section 4.1. The idea is to explore all pos-
sible granularity and choose the best according to the
experiments.

The evolution of the learning accuracy for the extin-
guisher class vs. the resolution shows that more com-
plex resolutions are much more appropriate that the
simpler ones (i.e., the histogram representation). As
a matter of fact, the accuracy is enhanced by 12.51%,
from 62.51% to 75.02%. However, this improvement is
not linear over the set of possible resolutions, since the
accuracy is better for the original 1 x 1 resolution than
for the 4 x 3 resolution. This can be explained by the
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Figure 6. Experiments with the ”fire extinguisher” con-
cepts



Resolution | Accuracy % | std.dev | time (s)
1x1 62,51 0,85 0.39
4x3 59,58 0,82 1.62
8x6 64,18 0,89 9.22

16x12 70,98 0,86 37.68
32x24 75,02 0,96 128.31

Table 3. PLIC results on learning the ”fire extinguisher”
concept

fact that the histogram representation is somewhat fit-
ted to capture some relevant information for image de-
scription (Stricker & Swain, 1994). As a consequence,
using a more complex representation may cause the
accuracy to decrease since the enhanced search space
makes it more complicated to learn while it may not
help to better discriminate the target concept.

Resolution enhancement proves to be profitable as
soon as a 8 x 6 resolution and the accuracy improves in
a nearly linear way from this point. Now, if we bring
our attention to the evolution of the learning accuracy
for the human class, we can see that the learning curve
is about the same, with a smaller amplitude, except
that at some point the accuracy reaches a maximum
(67.54% with the 16 x 12 resolution), and then starts
to decrease. This should tend to prove that the 16 x 12
resolution is the most fitted resolution for this concept,
in this environment, given what examples have been
observed. More complex resolutions cannot achieve a
better representation for this concept, or at least the
tradeoff between expressiveness and complexity is not
relevant anymore. As a matter of fact, we can extrapo-
late to say that if the resolution is enhanced, accuracy
should tend to reach 50% at some point, that is ran-
dom prediction.

However the general shape of the accuracy curves for
both concepts seem to share the same properties about
the trade off between expressiveness and complexity,
experiments shows that the best fitted granularity de-
pends on the concept to learn.

5.3. Experiments on automatic changes of
Structure

PLIC’s wrapper tool was used to generate up to nine
different, s-percept’s structural configurations that are
shown on figure 7. Each structural configuration is
then applied from every single r-percept to generate a
learning sets based on a 8 x 6 resolution of each of the
images of the image database, which is not the best
resolution for either concepts but provides a common
basis for evaluating learning accuracies. According to

22 i EE 15
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Figure 7. The nine structural configurations generated by
the Wrapper

the heuristic used by PLIC, a given structural configu-
ration is evaluated only if the corresponding learning
accuracy is better than at the previous step, and if at
least one attribute of each of the embedded r-percept
appears in the decision rules produced by the learner
(eg. in figure 7, the configuration ’3.1° will be eval-
uwated only if configuration ’2.1° matches these condi-
tions). Tables 5 and 4 respectively show the results
for the human class and the fire extinguisher class.

Results from the experiments show that in both case,
the highest accuracy is achieved by one of the most
complex structural configurations (64.81% for the ex-
tinguisher class, 71.56% for the human class). The
benefits of structural reformulation is more relevant
for the human class with a 3.5% gain than for the ex-
tinguisher class, where it is nearly useless. This can be
explained by the intrinsic properties of both concepts:
detecting a human may require expressing relations be-
tween parts (e.g. head on body) while an extinguisher
is often viewed as a uniform rectangle red shape in the
environment.

In these experiments, this structural configuration is
quite simple because of the low number of abstract
percepts considered. However, human occurrence de-
tection was achieved by the robot more than 7 times
out of 10 thanks to less than 48 s-percepts.

6. Related works

The problem setting described here have much in com-
mon with that of content-based image retrieval. As a
matter of fact, results from popular approaches to im-
age retrieval such as global color histogram compar-
ison, which are known to achieve good classification
results(Stricker & Swain, 1994), or region-based simi-
larity(Wang, 2001), which provides an efficient way to



Structure Id | Accuracy % | std.dev | time (s)
1 64,18 089 | 10,43
2.1 62,04 0,715 | 7475
2.2 63,795 0,83 10,185
3.1 64,335 0,695 9,02
3.2 64,405 0,755 8,655
3.3 63,21 0,715 9,465
3.4 63,46 0,75 9,475
35 64,31 0,77 | 9615
36 64,175 0,79 | 12,08

Table 4. PLIC results on learning the ”fire extinguisher”
concept and changing structure

Structure Id | Accuracy % | std.dev | time (s)

1 68,06 1,35 1,44
2.1 70,645 1,375 | 1,785
2.2 65,665 1,355 | 2,27
31 66,575 124 | 2,09
3.2 66,48 1,38 2,36
3.3 67.01 1,335 2,37
34 68.945 124 | 2235
35 71,56 117 | 2,235
3.6 64,87 1,36 2,58

Table 5. PLIC results on learning the "human” concept and
changing structure

compare images using spatial properties between seg-
mented regions, are relevant for this problem.

Image retrieval is concerned with classifying an im-
age based on its content, without precisely identify-
ing the location of the target concept in the image.
Approaches to image retrieval include model-based
classification, images description using Fourier trans-
forms, wavelets(Wang, 2001), etc. A popular approach
is based on matching sets of connected color regions
between images (Hsieh & Fan, 2000). The goal is
to find instances of a given spatial configuration be-
tween regions extracted from the images (i.e., using
a region growing algorithm). The main drawbacks of
this approach are the imprecision of region growing
techniques, and the cost of the matching phase be-
tween undirected planar graphs, representing sets of
connected regions. However, as mentioned previously
good classification results also also achieved by sim-
ply comparing the global color histogram of each im-
age (Stricker & Swain, 1994). In mobile robots, image
classification into categories is used for creating land-
marks or for navigating. In this case, image retrieval
using global color histograms is particularly well fitted

because it classifies quickly the whole image.

Our problem differs with that of image retrieval be-
cause we are concerned with checking if there is a spe-
cific property hidden in the image. As a matter of
fact, the environment of the robot provides very sim-
ilar images where global variations are not bounded
to the target concept while image retrieval is about
finding globally similar images among a set of very
different images. Moreover, we intend to create a set
of rules which is known to be much faster to apply
than any similarity measure, leading to nearly costless
image classification which can easily be implemented
in a real-time operating mobile robot.

7. Conclusion

In this paper we have addressed the problem of us-
ing automatic abstraction of visual percepts by an au-
tonomous mobile robot to improve its ability to learn
anchors(Coradeschi & Saffiotti, July 2000). This work
finds its application in a real-world environment within
the MICROBES multi-robots project (Picault & Dro-
goul, 2000), where anchors provides a basis for com-
munication between the PIONEER 2DX robot and its
human interlocutor. In the approach we proposed the
robot starts with the initial low-level representation of
the images it perceives with its LCD video camera,
and iteratively changes their representation so as to
improve the learning accuracy. Between the low-level
pixel representation and a global histogram represen-
tation there is an immense space of possible represen-
tations. To explore part of this abstract space of repre-
sentation we have identified two operators. A first one
changes the resolution and loose information by aver-
aging the colour of squares of pixels. A second one
that groups pixels without changing the resolution.

To guide the exploration of the space of possible ab-
stractions, we have combined in the PLIC system two
approaches, one based on a priori consideratyions, and
one using the learning results. From a Machine Learn-
ing point of view, this architecture corresponds to the
combination of the two widely used approaches in fea-
ture selection: the Wrapper-model (Kohavi & John,
1998) and the Filter-model (Kohavi & Sommerfield,
1995). The set of experiments that have been con-
ducted show that both operators do impact on the
learning accuracy. It is interesting to notice that the
best resolution and structure (sort of coordinates in
the abstract space) found by the system depends of
the concept. Since less low-level information is re-
quired to detect the presence of a human than a fire
extinguisher, it is not surprising that the optimum res-
olution is different. It is also clear that as the num-



ber of examples increase, different reformulation might
perform better. Creating high-level abstract percepts
does not only improve accuracy, it makes object detec-
tion faster for the robot. This is true as long as the ab-
straction process does not itself takes too much time.
This is a known trade-off in the field of abstraction
(Giunchiglia, 1996). As a matter of fact, abstracting
regions by using region growing algorithm (Rehrmann
& Priese, 1998) was a candidate abstract operators but
its computation is too costly for online detection.

This study shows that for learning anchors, an ap-
proach that periodically searches for the most accu-
rate representation, given the examples at hand, is a
promising direction. Moreover, it appears that for each
anchor that needs to be learnt, different abstractions
might be more appropriate. These findings, although
preliminary, raises several questions with respect to
the robot architecture. The search for a better repre-
sentation should be triggered by a decrease of perfor-
mance of the acquisition of new examples ? How to
compare the application of operators that change the
resolution and operators that change the structure ?
A central question for any lifelong learning system, in-
tegrating abstraction abilities, is to decide whether to
continue to exploit its current representation or explore
new representations at the risk of loosing resources if
no better ones is found.
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