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Abstract

The article deals with the problem of tex-
ture description. It presents a statistical ap-
proach. Specifically it introduces the use of
first- and second-order statistics on texture
color spaces. At the end we also give estima-
tions of computational time complexities of
calculations of parameters presented in this
article and describe our experience on two
application domains. This study is a pre-
liminary preparation for application of these
methods on medical images.

1. Introduction

Texture is a very commonly used term in computer
vision. We all recognize texture when we see it, but
it is very difficult to define it precisely. We can find
many texture definitions in literature. Coggins (1982)
for example collected a catalogue of texture definitions
found in computer vision literature. Briefly we can re-
gard an image texture as a function of spatial variation
in pizel values.

The above is a computer vision viewpoint of tex-
ture perception, but let us take a quick look at psy-
chophysics viewpoint of the matter. The question is
"When is a texture pair discriminable (by human),
given that they have the same brightness, contrast and
color?” Julesz (1973) has studied human texture per-
ception in the context of its discrimination. His work
concentrates on the spatial statistics of texture gray
levels. To summarize Julesz’s work, we need to define
the first- and second-order spatial statistics.

First-order statistics are calculated from the prob-
ability of observing a particular pixel value at a
randomly chosen location in the image. They de-
pend only on individual pixel values and not on

interaction of neighboring pixel values. The mean
of image gray intensity is an example of the first-
order statistic.

Second-order statistics are calculated from the
probability of observing a pair of pixel values in
the image that are some vector d apart. Note
t_l}at second-order statistics become first-order if
d = (0,0).

Julesz states that two textures are not preattentively
(at first sight) discriminable by human, if their sec-
ond order statistics are identical. It also means that
identity of first-order statistics can not assure us, that
those two textures won’t be discriminable by human.

Therefore, if we are to make a system that discrim-
inates textures at least as good as human does, we
should take into account both first- and second-order
statistics.

The paper is organized as follows. In the second sec-
tion we define histogram and first order statistics on
histogram function. In the third section we define
cooccurrence function and second order statistics on
cooccurrence function. The fourth section compre-
hends computational time complexity estimations of
functions described in second and third section. In
the fifth and sixth section we demonstrate the usage
of solutions presented in this article on two application
domains. The last section is a conclusion with some
ideas for improvements and further work.

2. First-order statistics

First-order statistics are quite straightforward. They
are computed from a function that measures the prob-
ability of a certain pixel occurring in an image. This
function is also known as histogram.



Histogram on gray scale images is defined as follows

n
H(g)=-2,9=0,1,...,G -1 1
(9) =339 (1)
where N is the number of all pixels in an image, G
is the number of gray levels and ng4 is the number of
pixels of value g in an image.

What about color images? Let’s suppose we use com-
mon RGB color space representation. In that case we
define histogram on color images like this

(@) =5cer (2)

where N is the number of all pixels in an image, £
denotes a three dimensional color space L X L x L
where L is the number of intensity levels per color
channel and nz is the number of pixels of value € in
an image.

As we can see H and x are probability functions of
pixel values, therefore we can characterize their prop-
erties with a set of statistical parameters (also called
first-order statistics). Below is a list of such param-
eters, where P, represents n-th parameter of H and
I1,,, denotes m-th parameter of x. Note that some II,,
are vectors from £. For example mean (average color)
of an image must also be a color, therefore a vector.
But on the other hand some II,, are scalars. For ex-
ample standard deviation is a measure of deviation in
the data, therefore not a vector. This is also obvious
arithmetically, if you just calculate the parameters.

Mean (average brightness / color)
G-1
IS Z 9H(9)
g=0
it = 3" @

ceL

Standard deviation (image contrast)
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1st moment

It is the same parameter as mean Pg = P; and f[(j =
1I;.

2nd moment
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3rd moment
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4th moment
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3. Second-order statistics

As it was already mentioned above, second-order
statistics operate on probability function, that mea-
sures the probability of a pair of pixel values occur-
ring some vector d apart in the image. This probabil-
ity function is also called cooccurrence matriz, since it
measures the probability of cooccurrence of two pixel
values. Since cooccurrence matrix becomes ”weird” in

color space, let us use the term cooccurrence function
(CF) instead.

Let us now define CF on the gray scale image. Suppose
we have a M x N image with color space of G gray lev-

els. Given a certain displacement vector +d = (dz, dy)



the CF looks like this

(7", S) =1, (t,”U) =J
((r,5), (t,v)); (r,s),(t,v) € M x N,
(t,v) = (r + dz, s + dy)

3)

Note that so defined CF is not symmetrical in terms
of C, i,j) # C_z{4,9). A symmetrical CF can be
computed using the formula

Cili,j) = C L i{i,J) + C_gi,5) (4)
Suppose we have a set of displacement vectors A =
{dy,dy,...,d,}. The final CF C used in second-order
statlstlcs is then the average at certain gray level (4, j)
over all CFs based on displacement vectors from A.

Ci.g) = avg {CGidi e A} (5)

CFs on color images can be defined in a similar way.
Suppose we have a M x N image with an ordinary
three dimensional RGB color space. Let’s say that
each color channel has L values. Therefore each image
pixel is a vector from £ which is a L x L x L space.

Given a certain displacement vector +d = (dz,dy) we
get the CF
(r,s) = ¢é, (t,v) = &,
((r;s), (X, v)); (r,s),(t,v) € M X N,
Lo (t,0) = (r'+ do,s + dy)
I i(c, ) =

(6)
Notice the difference: T' i is a function of two three
dimensional vectors (two RGB colors).

And again we can define a symmetrical I ;

Licr, ) =T (¢, ) +T_{c,éa) (7)
The final CF I" used in second-order statistics on color
images is the average at certain RGB color pair (¢, ¢2)
over all CFs based on displacement vectors from A.

(G, &) = avg {r (@, ): dy € A} 8)

The next important issue, which is important on color
as well as on gray scale images, is: Exactly which
displacement vectors d are in A? There’s no def-
inite answer, but there are some clues that came
from practice. Mostly used set of distance vectors
is A = {(1,0),(1,1),(0,1),(—=1,1)}. This actually
means, that we are considering four neighboring pixels.
It is empirically proven that this is a rather successful
set, but there is no proof that this is a universally good

set. This set holds pretty good information on local
(short distance) pixel dependancies, but lacks of global
(long distance) pixel dependancies. The more we ex-
tend A with vectors that represent larger distances,
the more local information we loose. This loss of in-
formation happens because of the averaging in the last
step of calculation of CF. There is obviously a trade
off between local and global information that CF could
hold.

In order to describe CF C of gray scale image Haralick
(1973) proposed a set of second-order statistics. These
statistics and their generalized versions (statistics for
') are listed below in this article. In the list below F,
represents n-th statistics of C' and ®,, denotes m-th
statistic of T.
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Correlation of C

Let us first define marginal probabilities of C'
G—-1
C'(i)= ) C(i,J)

j=0 i=0



C" = C" since C is symmetrical. Notice what is hap-
pening here: A probability of a certain C'(4) is cal-
culated so that probabilities over all possible pairs of
i are summed. What we get is a probability of pixel
value i itself. That is actually a histogram of an image.
The same holds for C” as well.

And let per and per be the means of marginal prob-
abilities

G-1 G-1
por =Y _iC'(i)  por =Y jC"())
i=0 )

Note that per = per. If C' and C” are histograms
of an image and pcs and per are their means, we can
easily see what po and per represent. They simply
represent the average pixel value of an image.

Further let 0 and o¢~ be the standard deviations of

C’ and C”

G—-1
oo = (i = per)*C7 (i)
=0
G-1
oor = | Y (G = per)>C"(j)
=0

Obviously ocr = o¢». Now we are ready to define a
measure of correlation for C, that is

S Z o (i = pe) (G — pen)Ci, 5)

O'C/O'C//

Fs =

Correlation of T’
Let us first define marginal probabilities of "

Y I(@,6) (@)=Y T(@,é)
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I'(é) =

I = T since T' is symmetrical. TV and I'” are also
histograms of an image, as we explained it before in
gray scale case.

And let pr and pr~ be the means of marginal proba-

bilities
=Y ar@) jin= Yy &l"(@)
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Note that now fir- and jip~ are vectors (remember they
represent average colors) and it still holds that jir =
firn.

Further let or» and op~ be the standard deviations of
I’ and T

21"/( )
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Obviously or» = op». And finally we are able to define
a measure of correlation for I', that is

Yoeer 2aer (@ — fir)(G2 — firn)T(C1, )

Py =
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Variance
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Mean of pair-sums

First define a new probability function. A function
that represents a probability of a particular pair-sum
of pixel values. Let’s denote it with S in gray scale
and O in color space.

> Cli,d)
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Now we can calculate their means

2(G-1)
Fr= 3 aS(x) &7=) ¢O(j)
=0 L
geL

where £ is a 2L x 2L x 2L space.

Variance of pair-sums
2(G-1)
Fy = Z (x — F7)?S(x)
=0
Oy =y (- P7)°O(7)
geL
Entropy of pair-sums

2(G—1)

Z S(x) log(S ()
Z@ ) log, ©(7)
yEL

Variance of pair-differences

Like we defined a probability function for pair-sums we
can also define a probability function for all possible
pair-differences. We will denote it with D in gray scale
and A in color space.

> Clig)

ji—jl=a



A(:J) = Z F(817E2)
[r1 —ra| =7
lg1 —g21 =g
by — ba| = b
where ¢; = (r1,¢q1,01), ¢ = (r2,92,b2) and § =
(r,g,b). Now it is possible to define both means of
pair-differences
G-1
pp =Y aD() jixn=) FAJ)
=0 yeLr

And finally we are able to calculate variances
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4. Time Complexity

It is important to analyse computational time com-
plexity of these functions. As they may be simply
written in math formulae they tend to be quite algo-
rithmically time and space consuming.

In the following subsections we will use: M and N to
denote a M x N image, G for gray scale channel and
L for the size of color channel.

4.1. Time Complexity of Histogram function

What we do here is run over all image pixels and count
them. The time complexity of this operation is O(mn).
That is usually feasible for all normal image sizes in
gray scale and color space.

4.2. Time Complexity of First-order Statistics

Note that all first-order statistics require the sum over
all points of gray/color space. That is the most time
consuming part of them.

In gray scale space

G-1
Z Function_of (H(g)) (9)

9=0

which gives time complexity O(n). Considering usual
values for GG the computational complexity is accept-
able with current hardware speed.

In color space we have

Z Function_of (x(¢))

ceL

(10)

which requires L3 loops. Time complexity is O(n?).
Now imagine, we use usual quantization of a signal
per color channel (L = 256), then L3 is approximately
16.7 million! Therefore, it is recommended to use a
rougher quantization, say L = 16.

4.3. Time Complexity of CF

Remember how we calculate CF. First we count all
pair pixels that are some vector +d apart. We can
do that in approximately M - N steps. Note the size
of the CF space. It is G x G for gray scale and
LxLxLxLxLxL for color images! Then we calculate
a symmetrical CF, which requires summing over all
gray/color space. That means G? summations in gray
scale and L% summations in color space. And lastly we
average CF's for all displacement vectors. Which again
requires G2 and LS operations respectively. Time com-
plexity in gray scale space is O(n?) and O(n®) in color
space. Needless to say, it is recommended to use a
rougher quantizations than 256 values per channel.

4.4. Time Complexity of Second-order
Statistics

The most time consuming part of second-order statis-
tics is obviously summing over all points from its space.

In gray scale space this part looks like this
G-1G-1

Z Function_of (C(i, 5)) (11)

j=0

=0



which requires G2 operations.

O(n?).

And in color space we have

Time complexity is

Z Z Function_of (T'(¢1,C)) (12)
C1EL C2EL

which requires L% operations. Time complexity is

O(n®).

5. Application: Droplets

In this section we describe one application of the ap-
proach presented in previous sections. The task is to
discriminate two chemical suspensions on the basis of
their images of dried drops.

For our experiment, the first suspension was 0.1% of
Al50O3 in HyO with acidity of Ph 6, the second suspen-
sion was also 0.1% of AlsO3 in HoO but with acidity
of Ph 10.

5.1. Procedure

The procedure was as follows. First the suspensions
were prepared. The second task was to make drop
samples of the suspensions. Drop samples were made
with a sterile syringe on a clean microscopic slide. 8
drops per slide were made (4 from Ph 6 suspension
and 4 from Ph 10 suspension). The average diameter
of a drop was about 5 mm. At this point the drops
were dried before further processing. To take pictures
of dried drops, we used a dark field microscope with a
mounted digital camera. A relatively small magnifica-
tion factor of 20 was used. Each drop separately was
observed under microscope and photographed (Figure
1, Figure 2). 12 slides of drops were sampled and we
got 45 images of Ph 6 and 37 images of Ph 10 sus-
pension. Some images had to be eliminated due to
inappropriate size of a drop (some drops were too big
to fit on the image).

Figure 1. An image of Ph 6 droplet

Figure 2. An image of Ph 10 droplet

The size of images was 2048 x 1536. The Color depth
was 24 bit.

In the next step we extracted an inner rectangular area
of each drop in order to obtain a discriminating pattern
(Figure 3, Figure 4).

Figure 3. An area marked for extraction

s i’«ﬁ ;
Figure 4. An extracted area

So preprocessed images were used in the next phase
of the experiment, where we calculated the histogram
and CF parameters. The calculation of parameters
was performed by our program ImageProcessor (IP),
that implements all the parameters described in Sec. 2
and 3. The output of IP was a list of samples (images)
described by histogram and CF parameters. Since we
know each sample’s origin (Ph 6 or Ph 10), i.e. its
class, we tried to solve this classification problem in
order to verify the quality of parameters.



The task is to classify samples into one of two classes
Ph 6 and Ph 10 using histogram and CF parameters.
We had 45+ 37 samples, which means the default clas-
sification error of 45%. The aim is to minimize the
classification error. We used Seeb (C5.0 algorithm)
(Quinlan, 1993), that builds decision trees. Each ex-
periment was 10 fold cross validated.

5.2. Results

In the first experiment we tried the parameters on
gray scale images. Each image was color-quantized to
256 levels for histogram and 16 levels for CF parame-
ters. The classification error on gray scale images was
5.0% + 2.8% (Table 1a), written in the form of mean
=+ standard error.

In the second experiment we tried parameters on color
images. Each image was color-quantized to 16 levels
per channel for histogram and 8 levels per channel for
CF parameters. The classification error on color im-
ages was 1.3% £ 1.3% (Table 1b).

Table 1. The results of see5 on (a) gray scale images and
(b) color images

Fold Decision Tree Fold Decision Tree
Size Errors Size Errors

0 3.0 12.5% 0 2.0 0.0%

1 3.0 0.0% 1 2.0 0.0%

2 3.0 0.0% 2 2.0 0.0%

3 3.0 12.5% 3 2.0 0.0%

4 3.0 0.0% 4 2.0 12.5%
5 3.0 0.0% 5 2.0 0.0%

6 3.0 25.0% 6 2.0 0.0%

7 3.0 0.0% 7 2.0 0.0%

8 3.0 0.0% 8 2.0 0.0%

9 3.0 0.0% 9 2.0 0.0%
Mean 3.0 5.0% Mean 2.0 1.3%
SE 0.0 2.8% SE 0.0 1.3%

The results prove the information quality of parame-
ters. The result on color images is better than on gray
scale ones, which shows the importance of color in pat-
terns. Notice that, though we used rougher quantiza-
tion on color images, the result is better than on gray
scale images.

6. Application: GDV

In the second application we tested parameters on
GDV (Gas Discharge Visualisation) images. GDV
images are obtained from "BEO GDV Camera by
Dr. Korotkov” (Korotkov, 1998). This digital cam-
era records images of gas discharge effect. An ob-
ject of consideration is grounded and exposed to high-
voltage and high-frequency field. These fields cause
ionisation of gas around the object. At certain volt-
age threshold gas discharges which is seen as a flash
of light. This light is captured with camera. Camera

captures 320 x 240 gray scale images. Camera comes
with software GDV Analysis (Korotkov, 1998), that
also generates parametric image description (Table 2).
GDV Analysis uses diferrent approach to parametriza-
tion of images and computes the following parameters:
area and relative area of corona, amount of deleted
noise, fractality (shape) of corona and fractal dimen-
sion, brightness and brightness deviation, number of
fragments, average area of fragments and its devia-
tion. The results from IP parameters were compared
with results from GDV Analysis.

Table 2. A list of GDV parameters
Area of GDV-gram

Noise deleted from image

Form coefficient 1

Fractal dimension

Brightness coefficient

Brightness deviation

# of separated fragments

Average area per fragment
Deviation of fragments’ areas
Relative area

Rel. coef. of glow inside inner oval
Rel. coef. of glow for 25% area
Rel. coef. of glow for 50% area
Rel. coef. of glow for 75% area
Rel. coef. of glow for 100% area
# of sectors

Areas in sectors

Quantile coefficient for the sectors

6.1. Metallic Cylinder (temperature)

We captured two sets of GDV images of metallic cylin-
der.

Figure 5. Metallic cylinder at 21°C



Figure 6. Metallic cylinder at —20°C'

The first class (S) of 30 images was captured at tem-
perature of 21°C. The second class (H) of 20 im-
ages was captured at —20°C. A two-class problem
with 40% default classification error. With IP we cal-
culated parametric description of each image. Then
we used seeb with 10 fold cross validation to clas-
sify parametric samples. The classification error was
2.0% £ 2.0%. The classification error with GDV Anal-
ysis was 6.0% + 3.1%.

6.2. Metallic Cylinder (voltage)

Later we performed another experiment with metallic
cylinder. We captured three sets of GDV images at
three different voltages.

Figure 7. Cylinder at 13.4kV

Figure 8. Cylinder at 15kV

Figure 9. Cylinder at 17kV

The first class (S) of 30 images was captured at
13.4kV. The second class (J) of 20 images was cap-
tured at 15kV. The third class (J3) of 20 images
was captured at 17kV. A three-class problem with
57% default classification error. With IP we calcu-
lated parametric description of each image. Then
we used seeb with 10 fold cross validation to clas-
sify parametric samples. The classification error was
4.3% +2.3%. The classification error with GDV Anal-
ysis was 5.7% + 3.2%.

6.3. Metallic Cone

Here we captured two sets of GDV images of metallic
cone at different voltages.



Figure 10. Metallic cone at 13.4kV

Figure 12. Forefinger at 33.2°C'

Figure 11. Metallic cone at 15kV

The first class (S) of 10 images was captured at
13.4kV. The second class (J) of 20 images was cap-
tured at 15kV. A two-class problem with 33% default
classification error. With IP we calculated parametric
description of each image. Then we used seeb with
10 fold cross validation to classify parametric samples.
The classification error was 6.7% 4 4.4%. The classifi-
cation error with GDV Analysis was 3.3% =+ 3.3%.

6.4. Forefinger

We also tested paremeters on GDV images of forefin-
ger. We captured three sets of GDV images at three
different forefinger temperatures.

Figure 13. Forefinger at 40.0°C

Figure 14. Forefinger at 20.0°C

The first class (S) of 30 images was captured at
33.2°C. The second class (G) of 10 images was cap-
tured at 40.0°C. The third class (H) of 10 images
was captured at 20.0°C. A three-class problem with
40% default classification error. With TP we calcu-
lated parametric description of each image. Then
we used seeb with 10 fold cross validation to clas-
sify parametric samples. The classification error was
14.0%=+4.3%. The classification error with GDV Anal-
ysis was 18.0% + 5.5%.



7. Conclusion

It is possible to describe a certain texture statistically.
The quality of description depends on complexity of
statistics, in other words, on computational time and
space. Histogram alone may be too simple to give a
good description, whereas CFs could do the job. The
use of CFs makes sense also because they can com-
pete with humans (Julesz & Gilbert & Shepp & Firsch,
1973) . Anyway, further work could continue in two
directions:

e To find new better second-order statistics.

e To try statistics of higher orders.

It would also be helpful, if we found a computationally
less expensive representation of CFs. Here is a poten-
tial solution. Generally we have a relatively huge color
space with relatively small number of points in it. For
example: Say we have a 1024 x 768 (M = 1024, N =
768) color image, with 256 values per color channel
(L = 256). Calculating its CF would require more
than 256% = 2.8 - 10'* steps. But we know that we
have at most 1024 -768 = 7.8-10° points in that space.
It would be much faster, if we store the relevant points
and their values (probabilities) and then scan through
points rather than through the whole space.

In section 6 we compared histogram and CF parame-
ters with GDV parameters by measuring classification
accuracy of C5.0. This comparison shows better ac-
curacy using histogram and CF parameters in 3 of 4
cases, which is suprising considering that GDV param-
eters are designed specially for the problem of GDV
image description.

This is a preliminary study of image analysis. The aim
is to use these methods in medical image analysis. We
plan to apply our algorithms on the analysis of pul-
monary scintigraphic images (diagnosis of lungs) and
myocardical scitigraphic images (diagnosis of isheamic
heart disease).
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